首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial signaling events underlying the chemotactic response of Escherichia coli to aspartic acid occur within a ternary complex that includes Tar (an aspartate receptor), CheA (a protein kinase), and CheW. Because CheW can bind to CheA and to Tar, it is thought to serve as an adapter protein in this complex. The functional importance of CheW binding interactions, however, has not been investigated. To better define the role of CheW and its binding interactions, we performed biochemical characterization of six mutant variants of CheW. We examined the ability of the purified mutant CheW proteins to bind to CheA and Tar, to promote formation of active ternary complexes, and to support chemotaxis in vivo. Our results indicate that mutations which eliminate CheW binding to Tar (V36M) or to CheA (G57D) result in a complete inability to form active ternary complexes in vitro and render the CheW protein incapable of mediating chemotaxis in vivo. The in vivo signaling pathway can, however, tolerate moderate changes in CheW-Tar and CheW-CheA affinities observed with several of the mutants (G133E, G41D, and 154ocr). One mutant (R62H) provided surprising results that may indicate a role for CheW in addition to binding CheA/receptors and promoting ternary complex formation.  相似文献   

2.
The dynamics of protein phosphorylation in bacterial chemotaxis   总被引:30,自引:0,他引:30  
K A Borkovich  M I Simon 《Cell》1990,63(6):1339-1348
The chemotaxis signal transduction pathway allows bacteria to respond to changes in concentration of specific chemicals (ligands) by modulating their swimming behavior. The pathway includes ligand binding receptors, and the CheA, CheY, CheW, and CheZ proteins. We showed previously that phosphorylation of CheY is activated in reactions containing receptor, CheW, CheA, and CheY. Here we demonstrate that this activation signal results from accelerated autophosphorylation of the CheA kinase. Evidence for a second signal transmitted by a ligand-bound receptor, which corresponds to inhibition of CheA autophosphorylation, is also presented. We postulate that CheA can exist in three forms: a "closed" form in the absence of receptor and CheW; an "open" form that results from activation of CheA by receptor and CheW; and a "sequestered" form in reactions containing ligand-bound receptor and CheW. The system's dynamics depends on the relative distribution of CheA among these three forms at any time.  相似文献   

3.
In Escherichia coli chemosensory arrays, transmembrane receptors, a histidine autokinase CheA, and a scaffolding protein CheW interact to form an extended hexagonal lattice of signaling complexes. One interaction, previously assigned a crucial signaling role, occurs between chemoreceptors and the CheW-binding P5 domain of CheA. Structural studies showed a receptor helix fitting into a hydrophobic cleft at the boundary between P5 subdomains. Our work aimed to elucidate the in vivo roles of the receptor–P5 interface, employing as a model the interaction between E. coli CheA and Tsr, the serine chemoreceptor. Crosslinking assays confirmed P5 and Tsr contacts in vivo and their strict dependence on CheW. Moreover, the P5 domain only mediated CheA recruitment to polar receptor clusters if CheW was also present. Amino acid replacements at CheA.P5 cleft residues reduced CheA kinase activity, lowered serine response cooperativity, and partially impaired chemotaxis. Pseudoreversion studies identified suppressors of P5 cleft defects at other P5 groove residues or at surface-exposed residues in P5 subdomain 1, which interacts with CheW in signaling complexes. Our results indicate that a high-affinity P5–receptor binding interaction is not essential for core complex function. Rather, P5 groove residues are probably required for proper cleft structure and/or dynamic behavior, which likely impact conformational communication between P5 subdomains and the strong binding interaction with CheW that is necessary for kinase activation. We propose a model for signal transmission in chemotaxis signaling complexes in which the CheW–receptor interface plays the key role in conveying signaling-related conformational changes from receptors to the CheA kinase.  相似文献   

4.
An allosteric model for transmembrane signaling in bacterial chemotaxis   总被引:4,自引:0,他引:4  
Bacteria are able to sense chemical gradients over a wide range of concentrations. However, calculations based on the known number of receptors do not predict such a range unless receptors interact with one another in a cooperative manner. A number of recent experiments support the notion that this remarkable sensitivity in chemotaxis is mediated by localized interactions or crosstalk between neighboring receptors. A number of simple, elegant models have proposed mechanisms for signal integration within receptor clusters. What is a lacking is a model, based on known molecular mechanisms and our accumulated knowledge of chemotaxis, that integrates data from multiple, heterogeneous sources. To address this question, we propose an allosteric mechanism for transmembrane signaling in bacterial chemotaxis based on the "trimer of dimers" model, where three receptor dimers form a stable complex with CheW and CheA. The mechanism is used to integrate a diverse set of experimental data in a consistent framework. The main predictions are: (1) trimers of receptor dimers form the building blocks for the signaling complexes; (2) receptor methylation increases the stability of the active state and retards the inhibition arising from ligand-bound receptors within the signaling complex; (3) trimer of dimer receptor complexes aggregate into clusters through their mutual interactions with CheA and CheW; (4) cooperativity arises from neighboring interaction within these clusters; and (5) cluster size is determined by the concentration of receptors, CheA, and CheW. The model is able to explain a number of seemingly contradictory experiments in a consistent manner and, in the process, explain how bacteria are able to sense chemical gradients over a wide range of concentrations by demonstrating how signals are integrated within the signaling complex.  相似文献   

5.
In bacterial chemotaxis, transmembrane chemoreceptors, the CheA histidine kinase, and the CheW coupling protein assemble into signaling complexes that allow bacteria to modulate their swimming behavior in response to environmental stimuli. Among the protein-protein interactions in the ternary complex, CheA-CheW and CheW-receptor interactions were studied previously, whereas CheA-receptor interaction has been less investigated. Here, we characterize the CheA-receptor interaction in Thermotoga maritima by NMR spectroscopy and validate the identified receptor binding site of CheA in Escherichia coli chemotaxis. We find that CheA interacts with a chemoreceptor in a manner similar to that of CheW, and the receptor binding site of CheA's regulatory domain is homologous to that of CheW. Collectively, the receptor binding sites in the CheA-CheW complex suggest that conformational changes in CheA are required for assembly of the CheA-CheW-receptor ternary complex and CheA activation.  相似文献   

6.
Four chemoreceptors in Escherichia coli mediate responses to chemicals in the environment. The receptors self-associate and localize to the cell poles. This aggregation implies that interactions among receptors are important parameters of signal processing during chemotaxis. We examined this phenomenon using a receptor-coupled in vitro assay of CheA kinase activity. The ability of homogeneous populations of the serine receptor Tsr and the aspartate receptor Tar to stimulate CheA was directly proportional to the ratio of the receptor to total protein in cell membranes up to a fraction of 50%. Membranes containing mixed populations of Tar and Tsr supported an up to 4-fold greater stimulation of CheA than expected on the basis of the contributions of the individual receptors. Peak activity was seen at a Tar:Tsr ratio of 1:4. This synergy was observed only when the two proteins were expressed simultaneously, suggesting that, under our conditions, the fundamental "cooperative receptor unit" is relatively static, even in the absence of CheA and CheW. Finally, we observed that inhibition of receptor-stimulated CheA activity by serine or aspartate required significantly higher concentrations of ligand for membranes containing mixed Tsr and Tar populations than for membranes containing only Tsr (up to 10(2)-fold more serine) or Tar (up to 10(4)-fold more aspartate). Together with recent analyses of the interactions of Tsr and Tar in vivo, our results reveal the emergent properties of mixed receptor populations and emphasize their importance in the integrated signal processing that underlies bacterial chemotaxis.  相似文献   

7.
In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion-coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA-CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes.  相似文献   

8.
Protein phosphorylation in the bacterial chemotaxis system   总被引:2,自引:0,他引:2  
M I Simon  K A Borkovich  R B Bourret  J F Hess 《Biochimie》1989,71(9-10):1013-1019
Bacterial chemotaxis involves the detection of changes in concentration of specific chemicals in the environment of the cell as a function of time. This process is mediated by a series of cell surface receptors that interact with and activate intracellular protein phosphorylation. Five cytoplasmic proteins essential for chemotaxis have been shown to be involved in a coupled system of protein phosphorylation. Ligand binding to cell surface receptors affects the rate of autophosphorylation of the CheA protein. In the absence of an attractant bound to receptor and in the presence of the CheW protein, the rate of CheA autophosphorylation is markedly increased. Phosphorylated CheA can transfer phosphate to the CheY or CheB proteins; phosphorylation of these "effector" proteins may increase their activity. The CheY protein is thought to regulate flagellar rotation and thus control swimming behavior. The CheB protein modifies the cell surface receptor and thus regulates receptor function. Finally, another chemotaxis protein, CheZ, acts to specifically dephosphorylate CheY-phosphate. This system shows marked similarity to the 2-component sensor-regulator systems found to control specific gene expression in a variety of bacteria.  相似文献   

9.
We examined the binding interactions of the methylation-dependent chemotaxis receptors Tsr and Tar with the chemotaxis-specific protein kinase CheA and the coupling factor CheW. Receptor directly bound CheW, but receptor-CheA binding was dependent upon the presence of CheW. These observations in combination with our previous identification of a CheW-CheA complex suggest that CheW physically links the kinase to the receptor. The ternary complex of receptor, CheW, and CheA is both kinetically and thermodynamically stable at physiological concentrations. Stability is not significantly altered by changes associated with attractant or repellent binding to the receptor. Such binding greatly modulates the kinase activity of CheA. Our results demonstrate that modulation of the kinase activity does not require association-dissociation of the ternary complex. This suggests that the receptor signal is transduced through conformational changes in the ternary complex rather than through changes in the association of the kinase CheA with receptor and/or CheW.  相似文献   

10.
Shrout AL  Montefusco DJ  Weis RM 《Biochemistry》2003,42(46):13379-13385
Transmembrane receptors in the signaling pathways of bacterial chemotaxis systems influence cell motility by forming noncovalent complexes with the cytoplasmic signaling proteins to regulate their activity. The requirements for receptor-mediated activation of CheA, the principal kinase of the Escherichia coli chemotaxis signaling pathway, were investigated using self-assembled clusters of a receptor fragment (CF) derived from the cytoplasmic domain of the aspartate receptor, Tar. Histidine-tagged Tar CF was assembled on the surface of sonicated unilamellar vesicles via a lipid containing the nickel-nitrilotriacetic acid moiety as a headgroup. In the presence of the adaptor protein CheW, CheA bound to and was activated approximately 180-fold by vesicle-bound CF. The extent of CheA activation was found to be independent of the level of covalent modification on the CF. Instead, the stability of the complex increased significantly as the level of covalent modification increased. Surface-assembled CF was also found to serve as a substrate for receptor methylation in a reaction catalyzed by the receptor methyltransferase, CheR. Since neither CheA activation nor CF methylation was observed in comparable samples in the absence of vesicles, it is concluded that surface templating generates the organization among CF subunits required for biochemical activity.  相似文献   

11.
Bacterial chemoreceptors form ternary signaling complexes with the histidine kinase CheA through the coupling protein CheW. Receptor complexes in turn cluster into cellular arrays that produce highly sensitive responses to chemical stimuli. In Escherichia coli, receptors of different types form mixed trimer-of-dimers signaling teams through the tips of their highly conserved cytoplasmic domains. To explore the possibility that the hairpin loop at the tip of the trimer contact region might promote interactions with CheA or CheW, we constructed and characterized mutant receptors with amino acid replacements at the two nearly invariant hairpin charged residues of Tsr: R388, the most tip-proximal trimer contact residue, and E391, the apex residue of the hairpin turn. Mutant receptors were subjected to in vivo tests for the assembly and function of trimers, ternary complexes, and clusters. All R388 replacements impaired or destroyed Tsr function, apparently through changes in trimer stability or geometry. Large-residue replacements locked R388 mutant ternary complexes in the kinase-off (F, H) or kinase-on (W, Y) signaling state, suggesting that R388 contributes to signaling-related conformational changes in the trimer. In contrast, most E391 mutants retained function and all formed ternary signaling complexes efficiently. Hydrophobic replacements of any size (G, A, P, V, I, L, F, W) caused a novel phenotype in which the mutant receptors produced rapid switching between kinase-on and -off states, indicating that hairpin tip flexibility plays an important role in signal state transitions. These findings demonstrate that the receptor determinants for CheA and CheW binding probably lie outside the hairpin tip of the receptor signaling domain.  相似文献   

12.
Using protein from the hyperthermophile Thermotoga maritima, we have determined the solution structure of CheW, an essential component in the formation of the bacterial chemotaxis signaling complex. The overall fold is similar to the regulatory domain of the chemotaxis kinase CheA. In addition, interactions of CheW with CheA were monitored by nuclear magnetic resonance (NMR) techniques. The chemical shift perturbation data show the probable contacts that CheW makes with CheA. In combination with previous genetic data, the structure also suggests a possible binding site for the chemotaxis receptor. These results provide a structural basis for a model in which CheW acts as a molecular bridge between CheA and the cytoplasmic tails of the receptor.  相似文献   

13.
Many proteins have recently been shown to localize to different regions of the bacterial cell. This is most striking in the case of the Escherichia coli chemotaxis pathway in which the components localize at the cell poles. Rhodobacter sphaeroides has a more complex chemotaxis system with two complete pathways, each localizing to different positions, one pathway at the pole and one at a discrete cluster within the cytoplasm of the bacterium. Using genomic replacement of the wild-type chemotaxis genes in R. sphaeroides with their corresponding fluorescent protein fusions in conjunction with in frame deletions of other chemotaxis genes, we have investigated which proteins are required for the formation of the polar and cytoplasmic chemotaxis protein clusters. As in E. coli, the polarly targeted CheA and CheW homologues are required for the formation of the polar cluster. However, the formation of the cytoplasmic cluster requires the cytoplasmic chemoreceptors and CheW but not the CheAs. Interestingly, even when deletion of a component resulted in the chemotaxis proteins of one pathway becoming delocalized and diffuse in the cytoplasm, in no case were any chemotaxis proteins seen to localize to the other signalling cluster.  相似文献   

14.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   

15.
Motor behavior in prokaryotes is regulated by a phosphorelay network involving a histidine protein kinase, CheA, whose activity is controlled by a family of Type I membrane receptors. In a typical Escherichia coli cell, several thousand receptors are organized together with CheA and an Src homology 3-like protein, CheW, into complexes that tend to be localized at the cell poles. We found that these complexes have at least 6 receptors per CheA. CheW is not required for CheA binding to receptors, but is essential for kinase activation. The kinase activity per mole of bound CheA is proportional to the total bound CheW. Similar results were obtained with the E. coli serine receptor, Tsr, and the Salmonella typhimurium aspartate receptor, Tar. In the case of Tsr, under conditions optimal for kinase activation, the ratio of subunits in complexes is approximately 6 Tsr:4 CheW:1 CheA. Our results indicate that information from numerous receptors is integrated to control the activity of a relatively small number of kinase molecules.  相似文献   

16.
The CheA kinase is a central protein in the signal transduction network that controls chemotaxis in Escherichia coli. CheA receives information from a transmembrane receptor (e.g., Tar) and CheW proteins and relays it to the CheB and CheY proteins. The biochemical activities of CheA proteins truncated at various distances from the carboxy terminus were examined. The carboxy-terminal portion of CheA regulates autophosphorylation in response to environmental signals transmitted through Tar and CheW. The central portion of CheA is required for autophosphorylation and is also presumably involved in dimer formation. The amino-terminal portion of CheA was previously shown to contain the site of autophosphorylation and to be able to transfer the phosphoryl group to CheB and CheY. These studies further delineate three functional domains of the CheA protein.  相似文献   

17.
The Escherichia coli chemotaxis signal transduction pathway has: CheA, a histidine protein kinase; CheW, a linker between CheA and sensory proteins; CheY, the effector; and CheZ, a signal terminator. Rhodobacter sphaeroides has multiple copies of these proteins (2 x CheA, 3 x CheW and 3 x CheY, but no CheZ). In this study, we found a fourth cheY and expressed these R. sphaeroides proteins in E. coli. CheA2 (but not CheA1) restored swarming to an E. coli cheA mutant (RP9535). CheW3 (but not CheW2) restored swarming to a cheW mutant of E. coli (RP4606). R. sphaeroides CheYs did not affect E. coli lacking CheY, but restored swarming to a cheZ strain (RP1616), indicating that they can act as signal terminators in E. coli. An E. coli CheY, which is phosphorylated but cannot bind the motor (CheY109KR), was expressed in RP1616 but had no effect. Overexpression of CheA2, CheW2, CheW3, CheY1, CheY3 and CheY4 inhibited chemotaxis of wild-type E. coli (RP437) by increasing its smooth-swimming bias. While some R. sphaeroides proteins restore tumbling to smooth-swimming E. coli mutants, their activity is not controlled by the chemosensory receptors. R. sphaeroides possesses a phosphorelay cascade compatible with that of E. coli, but has additional incompatible homologues.  相似文献   

18.
Rhodobacter sphaeroides is a motile bacterium that has multiple chemotaxis genes organized predominantly in three major operons (cheOp(1), cheOp(2), and cheOp(3)). The chemoreceptor proteins are clustered at two distinct locations, the cell poles and in one or more cytoplasmic clusters. One intriguing possibility is that the physically distinct chemoreceptor clusters are each composed of a defined subset of specific chemotaxis proteins, including the chemoreceptors themselves plus specific CheW and CheA proteins. Here we report the subcellular localization of one such protein, CheA(2), under aerobic and photoheterotrophic growth conditions. CheA(2) is predominantly clustered and localized at the cell poles under both growth conditions. Furthermore, its localization is dependent upon one or more genes in cheOp(2) but not those of cheOp(1) or cheOp(3). In E. coli, the polar localization of CheA depends upon CheW. The R. sphaeroides cheOp(2) contains two cheW genes. Interestingly, CheW(2) is required under both aerobic and photoheterotrophic conditions, whereas CheW(3) is not required under aerobic conditions but appears to play a modest role under photoheterotrophic conditions. This suggests that R. sphaeroides contains at least two distinct chemotaxis complexes, possibly composed of proteins dedicated for each subcellular location. Furthermore, the composition of these spatially distinct complexes may change under different growth conditions.  相似文献   

19.
Bacteria employ a modified two-component system for chemotaxis, where the receptors form ternary complexes with CheA histidine kinases and CheW adaptor proteins. These complexes are arranged in semi-ordered arrays clustered predominantly at the cell poles. The prevailing models assume that these arrays are static and reorganize only locally in response to attractant binding. Recent studies have shown, however, that these structures may in fact be much more fluid. We investigated the localization of the chemotaxis signaling arrays in Bacillus subtilis using immunofluorescence and live cell fluorescence microscopy. We found that the receptors were localized in clusters at the poles in most cells. However, when the cells were exposed to attractant, the number exhibiting polar clusters was reduced roughly 2-fold, whereas the number exhibiting lateral clusters distinct from the poles increased significantly. These changes in receptor clustering were reversible as polar localization was reestablished in adapted cells. We also investigated the dynamic localization of CheV, a hybrid protein consisting of an N-terminal CheW-like adaptor domain and a C-terminal response regulator domain that is known to be phosphorylated by CheA, using immunofluorescence. Interestingly, we found that CheV was localized predominantly at lateral clusters in unstimulated cells. However, upon exposure to attractant, CheV was found to be predominantly localized to the cell poles. Moreover, changes in CheV localization are phosphorylation-dependent. Collectively, these results suggest that the chemotaxis signaling arrays in B. subtilis are dynamic structures and that feedback loops involving phosphorylation may regulate the positioning of individual proteins.  相似文献   

20.
The chemoreceptor-CheA kinase-CheW coupling protein complex, with ancillary associated proteins, is at the heart of chemotactic signal transduction in bacteria. The goal of this work was to determine the cellular stoichiometry of the chemotaxis signaling proteins in Bacillus subtilis. Quantitative immunoblotting was used to determine the total number of chemotaxis proteins in a single cell of B. subtilis. Significantly higher levels of chemoreceptors and much lower levels of CheA kinase were measured in B. subtilis than in Escherichia coli. The resulting cellular ratio of chemoreceptor dimers per CheA dimer in B. subtilis is roughly 23.0 ± 4.5 compared to 3.4 ± 0.8 receptor dimers per CheA dimer observed in E. coli, but the ratios of the coupling protein CheW to the CheA dimer are nearly identical in the two organisms. The ratios of CheB to CheR in B. subtilis are also very similar, although the overall levels of modification enzymes are higher. When the potential binding partners of CheD are deleted, the levels of CheD drop significantly. This finding suggests that B. subtilis selectively degrades excess chemotaxis proteins to maintain optimum ratios. Finally, the two cytoplasmic receptors were observed to localize among the other receptors at the cell poles and appear to participate in the chemoreceptor complex. These results suggest that there are many novel features of B. subtilis chemotaxis compared with the mechanism in E. coli, but they are built on a common core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号