首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Non-peptidic small molecule inhibitors of XIAP   总被引:5,自引:0,他引:5  
Non-peptidic small molecule SMAC mimetics were designed and synthesized that bind to the BIR3 domain of XIAP using structure-based design. Substituted five-membered heterocycles such as thiazoles and imidazoles were identified that serve as replacements for peptide fragments of the lead.  相似文献   

3.
4.
A series of small molecule STAT3 inhibitors originally derived from our lead compound STA 21 were synthesized and evaluated. The most potent compound in this series, compound 1, exhibited the same anti-proliferative activities as STA 21 against prostate cancer cell lines that express constitutively active STAT3. Molecular docking showed compound 1 bound to the STAT3beta SH2 domain in a similar manner as STA 21.  相似文献   

5.
6.
A targeted library of small molecules has been prepared to optimize the biological activity of BN82002, our initial lead compound, recently described as an original inhibitor of CDC25 phosphatases. Some of these compounds inhibit CDC25 in the micromolar range and therefore reinforce the interest of CDC25 as an anticancer target.  相似文献   

7.
New small molecule inhibitors of HCV were discovered by screening a small library of indoline alkaloid-type compounds. An automated assay format was employed which allowed identification of dimerization inhibitors of core, the capsid protein of the virus. These compounds were subsequently shown to block production of infectious virus in hepatoma cells.  相似文献   

8.
Most protein kinases share a DFG (Asp-Phe-Gly) motif in the ATP site that can assume two distinct conformations, the active DFG-in and the inactive DFG-out states. Small molecule inhibitors able to induce the DFG-out state have received considerable attention in kinase drug discovery. Using a typical DFG-in inhibitor scaffold of Aurora A, a kinase involved in the regulation of cell division, we found that halogen and nitrile substituents directed at the N-terminally flanking residue Ala273 induced global conformational changes in the enzyme, leading to DFG-out inhibitors that are among the most potent Aurora A inhibitors reported to date. The data suggest an unprecedented mechanism of action, in which induced-dipole forces along the Ala273 side chain alter the charge distribution of the DFG backbone, allowing the DFG to unwind. As the ADFG sequence and three-dimensional structure is highly conserved, DFG-out inhibitors of other kinases may be designed by specifically targeting the flanking alanine residue with electric dipoles.  相似文献   

9.
Transition state analogs pepstatin methylester (PME) and L685458 have been shown to inhibit gamma-secretase non-competitively (Tian, G., Sobotka-Briner, C., Zysk, J., Liu, X., Birr, C., Sylvester, M. A., Edwards, P. D., Scott, C. W., and Greenberg, B. D. (2002) J. Biol. Chem. 277, 31499-31505). This unusual kinetics suggests physical separation of the sites for substrate binding and catalysis with binding of the transition state analogs to the catalytic site and not to the substrate binding site. Methods of inhibitor cross-competition kinetics and competition ligand binding were utilized to address whether non-transition state small molecule inhibitors, which also display non-competitive inhibition of gamma-secretase, inhibit the enzyme by binding to the catalytic site as well. Inhibitor cross-competition kinetics indicated competitive binding between the transition state analogs PME and L685458 and between small molecules arylsulfonamides and benzodiazepines, but non-competitive binding between the transition state analogs and the small molecule inhibitors. These results were indicative of two inhibitor binding sites, one for transition state analogs and the other for non-transition state small molecule inhibitors. The presence of two inhibitor binding sites for two different classes of inhibitors was corroborated by results from competition ligand binding using [3H]L685458 as the radioligand. Although L685458 and PME displaced the radioligand at the same concentrations as for enzyme inhibition, arylsulfonamides and benzodiazepines did not displace the radioligand at their Ki values, a result consistent with the presence of two inhibitor binding sites. These findings provide useful insights into the catalytic and regulatory mechanisms of gamma-secretase that may facilitate the design of novel gamma-secretase inhibitors.  相似文献   

10.
We describe the development of a novel series of N-aryl-benzimidazolone HSP90 inhibitors (9) targeting the N-terminal ATP-ase site. SAR development was influenced by structure-based design based around X-ray structures of ligand bound HSP90 complexes. Lead compounds exhibited high binding affinities, ATP-ase inhibition and cellular client protein degradation.  相似文献   

11.
A novel class of pyridinyl aminohydantoins was designed and prepared as highly potent BACE1 inhibitors. Compound (S)-4g showed excellent potency with IC50 of 20 nM for BACE1. X-ray crystallography indicated that the interaction between pyridine nitrogen and the tryptophan Trp76 was a key feature in the S2′ region of the enzyme that contributed to increased potency.  相似文献   

12.
The virulent spore-forming bacterium Bacillus anthracis secretes anthrax toxin composed of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease that inactivates key signaling molecules, such as mitogen-activated protein kinase kinases (MAPKK), to ultimately cause cell death. We report here the identification of small molecule (nonpeptidic) inhibitors of LF. Using a two-stage screening assay, we determined the LF inhibitory properties of 19 compounds. Here, we describe six inhibitors on the basis of a pharmacophoric relationship determined using X-ray crystallographic data, molecular docking studies and three-dimensional (3D) database mining from the US National Cancer Institute (NCI) chemical repository. Three of these compounds have K(i) values in the 0.5-5 microM range and show competitive inhibition. These molecular scaffolds may be used to develop therapeutically viable inhibitors of LF.  相似文献   

13.
Design of small molecule ketoamide-based inhibitors of cathepsin K   总被引:1,自引:0,他引:1  
A novel series of ketoamide-based inhibitors of cathepsin K has been identified. Modifications to P(2) and P(3) elements were crucial to enhancing inhibitory activity. Although not optimized, a selected inhibitor was effective in attenuating type I collagen hydrolysis in a surrogate assay of bone resorption.  相似文献   

14.
15.
Human immunodeficiency virus-1 integrase (HIV-1 IN) inserts the viral DNA into host cell chromatin in a multistep process. This enzyme exists in equilibrium between monomeric, dimeric, tetrameric and high order oligomeric states. However, monomers of IN are not capable of supporting its catalytic functions and the active form has been shown to be at least a dimer. As a consequence, the development of inhibitors targeting IN dimerization constitutes a promising novel antiviral strategy. In this work, we successfully combined different computational techniques in order to identify small molecule inhibitors of IN dimerization. Additionally, a novel AlphaScreen-based IN dimerization assay was used to evaluate the inhibitory activities of the selected compounds. To the best of our knowledge, this study represents the first successful virtual screening and evaluation of small molecule HIV-1 IN dimerization inhibitors, which may serve as attractive hit compounds for the development of novel anti-HIV.  相似文献   

16.
Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil on gp41. Two types of modifications were tested: 1) increasing the overall hydrophobicity of the molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical dimers with two peptidomimetic motifs that could potentially interact simultaneously in two hydrophobic pockets on the HR1 trimer. The latter approach was more successful, yielding 40–60 times improved potency against HIV fusion over the monomers. Biophysical characterization, including equilibrium binding studies by fluorescence and kinetic analysis by Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of the targeted intermediate. Optimization of monomer, dimer or higher order structures has the potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic pockets.  相似文献   

17.
An orally available series of ketoamide-based inhibitors of cathepsin K has been identified. Starting from a potent inhibitor with poor oral bioavailability, modifications to P1 and P1' elements led to enhancements in solubility and permeability. These improvements resulted in orally available cathepsin K inhibitors.  相似文献   

18.
Severe acute respiratory coronavirus (SARS-CoV) emerged in 2002, resulting in roughly 8000 cases worldwide and 10% mortality. The animal reservoirs for SARS-CoV precursors still exist and the likelihood of future outbreaks in the human population is high. The SARS-CoV papain-like protease (PLP) is an attractive target for pharmaceutical development because it is essential for virus replication and is conserved among human coronaviruses. A yeast-based assay was established for PLP activity that relies on the ability of PLP to induce a pronounced slow-growth phenotype when expressed in S. cerevisiae. Induction of the slow-growth phenotype was shown to take place over a 60-hour time course, providing the basis for conducting a screen for small molecules that restore growth by inhibiting the function of PLP. Five chemical suppressors of the slow-growth phenotype were identified from the 2000 member NIH Diversity Set library. One of these, NSC158362, potently inhibited SARS-CoV replication in cell culture without toxic effects on cells, and it specifically inhibited SARS-CoV replication but not influenza virus replication. The effect of NSC158362 on PLP protease, deubiquitinase and anti-interferon activities was investigated but the compound did not alter these activities. Another suppressor, NSC158011, demonstrated the ability to inhibit PLP protease activity in a cell-based assay. The identification of these inhibitors demonstrated a strong functional connection between the PLP-based yeast assay, the inhibitory compounds, and SARS-CoV biology. Furthermore the data with NSC158362 suggest a novel mechanism for inhibition of SARS-CoV replication that may involve an unknown activity of PLP, or alternatively a direct effect on a cellular target that modifies or bypasses PLP function in yeast and mammalian cells.  相似文献   

19.
Viral hemorrhagic fevers caused by the arenaviruses Lassa virus in Africa and Machupo, Guanarito, Junin, and Sabia virus in South America are among the most devastating emerging human diseases with fatality rates of 15-35% and a limited antiviral therapeutic repertoire available. Here we used high throughput screening of synthetic combinatorial small molecule libraries to identify inhibitors of arenavirus infection using pseudotyped virion particles bearing the glycoproteins (GPs) of highly pathogenic arenaviruses. Our screening efforts resulted in the discovery of a series of novel small molecule inhibitors of viral entry that are highly active against both Old World and New World hemorrhagic arenaviruses. We observed potent inhibition of infection of human and primate cells with live hemorrhagic arenaviruses (IC(50)=500-800 nm). Investigations of the mechanism of action revealed that the candidate compounds efficiently block pH-dependent fusion by the arenavirus GPs (IC(50) of 200-350 nm). Although our lead compounds were potent against phylogenetically distant arenaviruses, they did not show activity against other enveloped viruses with class I viral fusion proteins, indicating specificity for arenavirus GP-mediated membrane fusion.  相似文献   

20.
The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号