共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Three strains of Bacillus cereus isolated from sausages (Salami and Trekker, RANBAC, Ranchi) produced enterotoxin which caused vascular permeability in skin and haemorrhage in the ligated ileal loops of rabbits. Histopathological studies revealed haemorrhage and congestion in submucosa, mononuclear cell infiltration in lamina propria and submucosa and villous atrophy. Histochemical studies ruled out the effect on mitochondrial enzymes of intestinal epithelial cells. Purified enterotoxin given intradermally to rabbits caused severe necrotic reaction at the site of injection and death within 4 hr. Histopathological changes observed in liver included congestion of portal veins and sinusoids, vacuolar degeneration of hepatocytes, and hyperplasia of bile ducts. These suggested that B. cereus enterotoxin affected the capillaries of blood vessels locally and also systemically resulting into release of proteinaceous exudates and red blood cells. 相似文献
4.
Dyhydrodipicolinate reductases were purified 100-fold from crude extracts of B. cereus and B. megaterium and their properties were compared with those of the reductase from B. subtilis. The molecular weights of the reductases of B. cereus and B. megaterium were fount to be 155,000 and 150,000, respectively. These reductases were shown to be free of flavin, unlike the B. subtilis enzyme, which contains flavin. Both NADPH and NADH acted as coenzymes for these two reductases. NADPH being three or four times more effective than NADH. The Km values for NADPH and dihydrodipicolinate were 8 micrometer and 62 micrometer, respectively, with B. cereus reductase, and 13 micrometer and 59 micrometer with B. megaterium reductase. The pH optima of the enzymes from B. cereus and B. megaterium were pH 7.4 and 7.2, respectively. The reductases were inhibited by dipicolinate noncompetitively with respect to dihydrodipicolinate and the Ki values were 85 micrometer and 140 micrometer, respectively. Lysine and diaminopimelate were not inhibitory. The properties of the reductases from B. cereus and B. megaterium were similar, but they differed considerably from those of the B. subtilis enzyme. However, all three Bacillus reductases were markedly inhibited by dipicolinate, unlike the enzyme from E. coli. 相似文献
5.
Extracellular alpha-amylase was purified to homogeneity from a Marburg strain of Bacillus subtilis. The enzyme is a single polypeptide chain of molecular weight approximately 67,000. Its NH2-terminal amino acid sequence is Leu-Thr-Ala-Pro-Ser-Ile-Lys. A membrane-derived alpha-amylase was solubilizing from membrane vesicles by treatment with Triton X-100 and was highly purified by chromatography on an anti-alpha-amylase-protein A-Sepharose column. Membrane-derived alpha-amylase was indistinguishable from the soluble extracellular enzyme by sodium dodecyl sulfate-gel electrophoresis and radioimmunoassay. The membrane-derived enzyme contains phospholipid. Approximately 30 to 80% of the phospholipid was extracted from the purified enzyme by chloroform:methanol. The extracted phospholipid was predominately phosphatidylethanolamine. Treatment with phospholipase D released phosphatidic acid. Membrane-bound alpha-amylase was latent in membrane vesicles. Release of membrane-bound alpha-amylase from vesicles by an endogenous enzyme was maximal at pH 8.5, was inhibited by metal chelators and diisopropyl fluorophosphate and was stimulated by Ca2+ and Mg2+. The amount of membrane-bound alpha-amylase was related to the level of secretion. 相似文献
6.
Fluer FS 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》2007,(2):105-110
Data about Bacillus cereus different enterotoxins including hemolysin (HBL), nonhemolytic enterotoxin (NHE), enterotoxin (T), and emesis-inducing thermostable enterotoxin (ETE) are summarized in the article. Information about synthesis of different diarrhea-inducing and emesis-inducing enterotoxins, methods of their purification, structure, functions, and mechanisms of action are presented. Commercial kits for identification of B. cereus enterotoxins causing food-associated diarrhea are listed. 相似文献
7.
8.
I H Higuti M Stencel K H Nascimento A J Nascimento 《Cell biochemistry and function》1992,10(4):237-241
The membrane ATPase (EC 3.6.1.3) of Bacillus cereus was solubilized by a 'shock-wash' process and purified. The non-specific phosphatase contaminant was separated by glycerol density gradient centrifugation. The optimum temperature was 39.5 degrees C and the pH optimum at 7.5. On SDS-polyacrylamide gel electrophoresis two classes of subunits were observed in equal proportions with molecular weights of 70 K and 83 K. The effect of various compounds on the enzymatic activity was studied. The enzyme was insensitive to NaN3, oligomycin and to divalent cations, but was inhibited by citrate and oxalate. 相似文献
9.
A proteolytic activity is associated with the dormant spores of Bacillus cereus T and can be solubilized by washing the spores with 1 M KCl. This proteolytic activity is responsible for the attack of beta chains of ribonucleic acid-polymerase in extracts of dormant spores of this organism. 相似文献
10.
A physical map of the Bacillus cereus chromosome has been constructed by aligning 11 NotI fragments, ranging in size from 200 to 1,300 kilobases. The size of the chromosome is about 5.7 megabases. This is the first Bacillus genome of which a complete physical map has been described. 相似文献
11.
12.
Toxin-Producing Ability among Bacillus spp. Outside the Bacillus cereus Group 总被引:1,自引:0,他引:1 下载免费PDF全文
Cecilie From Rudiger Pukall Peter Schumann Víctor Hormazábal Per Einar Granum 《Applied microbiology》2005,71(3):1178-1183
A total of 333 Bacillus spp. isolated from foods, water, and food plants were examined for the production of possible enterotoxins and emetic toxins using a cytotoxicity assay on Vero cells, the boar spermatozoa motility assay, and a liquid chromatography-mass spectrometry method. Eight strains produced detectable toxins; six strains were cytotoxic, three strains produced putative emetic toxins (different in size from cereulide), and one strain produced both cytotoxin(s) and putative emetic toxin(s). The toxin-producing strains could be assigned to four different species, B. subtilis, B. mojavensis, B. pumilus, or B. fusiformis, by using a polyphasic approach including biochemical, chemotaxonomic, and DNA-based analyses. Four of the strains produced cytotoxins that were concentrated by ammonium sulfate followed by dialysis, and two strains produced cytotoxins that were not concentrated by such a treatment. Two cultures maintained full cytotoxic activity, two cultures reduced their activity, and two cultures lost their activity after boiling. The two most cytotoxic strains (both B. mojavensis) were tested for toxin production at different temperatures. One of these strains produced cytotoxin at growth temperatures ranging from 25 to 42°C, and no reduction in activity was observed even after 24 h of growth at 42°C. The strains that produced putative emetic toxins were tested for the influence of time and temperature on the toxin production. It was shown that they produced putative emetic toxin faster or just as fast at 30 as at 22°C. None of the cytotoxic strains produced B. cereus-like enterotoxins as tested by PCR or by immunological methods. 相似文献
13.
Bacillus cereus neutral protease 总被引:6,自引:0,他引:6
J Feder L Keay L R Garrett N Cirulis M H Moseley B S Wildi 《Biochimica et biophysica acta》1971,251(1):74-78
14.
From C Pukall R Schumann P Hormazábal V Granum PE 《Applied and environmental microbiology》2005,71(3):1178-1183
A total of 333 Bacillus spp. isolated from foods, water, and food plants were examined for the production of possible enterotoxins and emetic toxins using a cytotoxicity assay on Vero cells, the boar spermatozoa motility assay, and a liquid chromatography-mass spectrometry method. Eight strains produced detectable toxins; six strains were cytotoxic, three strains produced putative emetic toxins (different in size from cereulide), and one strain produced both cytotoxin(s) and putative emetic toxin(s). The toxin-producing strains could be assigned to four different species, B. subtilis, B. mojavensis, B. pumilus, or B. fusiformis, by using a polyphasic approach including biochemical, chemotaxonomic, and DNA-based analyses. Four of the strains produced cytotoxins that were concentrated by ammonium sulfate followed by dialysis, and two strains produced cytotoxins that were not concentrated by such a treatment. Two cultures maintained full cytotoxic activity, two cultures reduced their activity, and two cultures lost their activity after boiling. The two most cytotoxic strains (both B. mojavensis) were tested for toxin production at different temperatures. One of these strains produced cytotoxin at growth temperatures ranging from 25 to 42 degrees C, and no reduction in activity was observed even after 24 h of growth at 42 degrees C. The strains that produced putative emetic toxins were tested for the influence of time and temperature on the toxin production. It was shown that they produced putative emetic toxin faster or just as fast at 30 as at 22 degrees C. None of the cytotoxic strains produced B. cereus-like enterotoxins as tested by PCR or by immunological methods. 相似文献
15.
Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. 总被引:7,自引:0,他引:7 下载免费PDF全文
A novel enterotoxin gene was cloned from Bacillus cereus FM1, and its nucleotide sequence was determined. Previously, a 45-kDa protein causing characteristic enterotoxin symptoms in higher animals had been isolated (K. Shinagawa, p. 181-193, in A. E. Pohland et al., ed., Microbial Toxins in Foods and Feeds, 1990) from the same B. cereus strain, but no report of cloning of the enterotoxin gene has been published. In the present study, a specific antibody to the purified enterotoxin was produced and used to screen the genomic library of B. cereus FM1 made with the lambda gt11 vector. An immunologically positive clone was found to contain the full protein-coding region and some 5' and 3' flanking regions. The deduced amino acid sequence of the cloned gene indicated that the protein is rich in beta structures and contains some unusual sequences, such as consecutive Asn residues. In order to clone enterotoxin genes from Bacillus thuringiensis, two PCR primers were synthesized based on the nucleotide sequence of the B. cereus gene. These primers were designed to amplify the full protein-coding region. PCR conducted with DNA preparations from the B. thuringiensis subsp. sotto and B. thuringiensis subsp. israelensis strains successfully amplified a segment of DNA with a size almost identical to that of the protein-coding region of the B. cereus enterotoxin. Nucleotide sequences of the amplified DNA segments showed that these B. thuringiensis strains contain an enterotoxin gene very similar to that of B. cereus. Further PCR screening of additional B. thuringiensis strains with four primer pairs in one reaction revealed that some additional B. thuringiensis strains contain enterotoxin-like genes. 相似文献
16.
Zwittermicin A is a novel aminopolyol antibiotic produced by Bacillus cereus that is active against diverse bacteria and lower eukaryotes (L.A. Silo-Suh, B.J. Lethbridge, S.J. Raffel, H. He, J. Clardy, and J. Handelsman, Appl. Environ. Microbiol. 60:2023-2030, 1994). To identify a determinant for resistance to zwittermicin A, we constructed a genomic library from B. cereus UW85, which produces zwittermicin A, and screened transformants of Escherichia coli DH5alpha, which is sensitive to zwittermicin A, for resistance to zwittermicin A. Subcloning and mutagenesis defined a genetic locus, designated zmaR, on a 1.2-kb fragment of DNA that conferred zwittermicin A resistance on E. coli. A DNA fragment containing zmaR hybridized to a corresponding fragment of genomic DNA from B. cereus UW85. Corresponding fragments were not detected in mutants of B. cereus UW85 that were sensitive to zwittermicin A, and the plasmids carrying zmaR restored resistance to the zwittermicin A-sensitive mutants, indicating that zmaR was deleted in the zwittermicin A-sensitive mutants and that zmaR is functional in B. cereus. Sequencing of the 1.2-kb fragment of DNA defined an open reading frame, designated ZmaR. Neither the nucleotide sequence nor the predicted protein sequence had significant similarity to sequences in existing databases. Cell extracts from an E. coli strain carrying zmaR contained a 43.5-kDa protein whose molecular mass and N-terminal sequence matched those of the protein predicted by the zmaR sequence. The results demonstrate that we have isolated a gene, zmaR, that encodes a zwIttermicin A resistance determinant that is functional in both B. cereus and E. coli. 相似文献
17.
18.
Thermostability of Bacillus cereus penicillinase 总被引:1,自引:0,他引:1
Williams, Daniel H., III (Hahnemann Medical College, Philadelphia, Pa.), A. Bondi, A. G. Moat, and F. Ahmad. Thermostability of Bacillus cereus penicillinase. J. Bacteriol. 91:257-261. 1966.-The extracellular penicillinase of Bacillus cereus, strain 13-10, exhibited an unusual thermostability. Whereas it was completely and irreversibly inactivated by heating at 70 C, it retained considerable activity when heated at 100 C for 30 min. The active enzyme remaining was completely stable to further heating at temperatures from 40 to 100 C for as long as 1 hr. Preparations of the enzyme heated to 100 C possessed pH (7.0) and temperature (37 C) optima identical with the unheated enzyme. Furthermore, both enzyme preparations exhibited identical combining capacity for the substrate (penicillin G), suggesting that the two preparations had similar hydrolytic properties. Our findings suggest that heating of penicillinase at 100 C results in the formation of a protein complex which is resistant to further denaturation by heat and other agents. Addition of certain metal ions to the enzyme solution before heat treatment increased the stability to heat at 100 C by virtue of their ability to induce complex formation. Pectin was shown to decrease thermostability, presumably by preventing aggregation of proteins present in the enzyme preparations. The well-known stabilizing effect of gelatin may be attributed to its role in enhancing complex formation. 相似文献
19.
Bacillus cereus strain K-22 produced two distinct omega-amino acid transaminases, one catalyzing the transamination between beta-alanine and pyruvic acid and the other that between gamma-aminobutyric acid and alpha-ketoglutaric aic. The two enzymes were partially purified and separated from each other by various chromatographies. beta-Alanine:pyruvic acid transaminase and gamma-aminobutyric acid:alpha-ketoglutaric acid transaminase were induced by the addition of beta-alanine and gamma-aminobutyric acid, respectively, to the growth medium. beta-Alanine transaminase showed an optimum pH of 10.0 and optimum temperature of 35 degrees C, and its Km values for beta-alanine and pyruvic acid were both 1.1 mM. gamma-Aminobutyric acid, epsilon-aminocaproic acid, 2-aminoethylphosphonic acid, and propylamine showed about 30-40% of the activity of beta-alanine as amino donors, and oxalacetic acid was as good an amino acceptor as pyruvic acid. The optimum pH and temperature of gamma-aminobutyric acid transaminase were 9.0 and 50 degrees C, respectively, and its Km value for gamma-aminobutyric acid was 2.8 mM, while that for alpha-ketoglutaric acid was 2.3 mM. gamma-Aminobutyric acid and delta-aminovaleric acid were good amino donors but other omega-amino acids were virtually inactive with gamma-aminobutyric acid transaminase; alpha-ketoglutaric acid, and to a lesser extent glyoxylic acid, were active amino acceptors. Sulfhydryl reagents specifically activated gamma-aminobutyric acid transaminase. 相似文献
20.
Bacillus cereus secretes three different phospholipases C. We studied the effect of Pi levels in the growth medium on the production of these exoenzymes. Production of both phosphatidylcholine-preferring phospholipase C and sphingomyelinase C was repressed by Pi in the growth medium, whereas production of phosphatidylinositol phospholipase C was unaffected. We also found that B. cereus secretes a phosphate-repressed alkaline phosphatase activity. Together with a previously reported highly efficient, active uptake system for Pi, these three phosphate-repressed exoenzyme activities seem to be part of a phosphate retrieval mechanism that operates under growth-limiting concentrations of Pi. In natural soil systems, which are the natural habitats of B. cereus, the scarcity of Pi is the major growth-limiting factor. A phosphate-repressed metalloprotease activity was also detected in culture supernatants of B. cereus. It is unclear whether this exoenzyme activity also participates in the proposed phosphate-scavenging system. 相似文献