首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the involvement of K+ efflux in apoptotic cell shrinkage, we monitored efflux of the K+ congener,86 Rb+, and cell volume during CD95-mediated apoptosis in Jurkat cells. An anti-CD95 antibody caused apoptosis associated with intracellular GSH depletion, a significant increase in 86Rb+ efflux, and a decrease in cell volume compared with control cells. Preincubating Jurkat cells with Val-Ala-Asp-chloromethylketone (VAD-cmk), an inhibitor of caspase proteases, prevented the observed 86Rb+ efflux and cell shrinkage induced by the anti- CD95 antibody. A wide range of inhibitors against most types of K+ channels could not inhibit CD95-mediated efflux of86 Rb+, however, the uptake of86 Rb+ by Jurkat cells was severely compromised when treated with anti-CD95 antibody. Uptake of86 Rb+ in Jurkat cells was sensitive to ouabain (a specific Na+/K+-ATPase inhibitor), demonstrating Na+/K+-ATPase dependent K+ uptake. Ouabain induced significant86 Rb+ efflux in untreated cells, as well as it seemed to compete with86 Rb+ efflux induced by the anti-CD95 antibody, supporting a role for Na+/K+-ATPase in the CD95-mediated86 Rb+ efflux. Ouabain treatment of Jurkat cells did not cause a reduction in cell volume, although together with the anti-CD95 antibody, ouabain potentiated CD95-mediated cell shrinkage. This suggests that the observed inhibition of Na++/K+-ATPase during apoptosis may also facilitate apoptotic cell shrinkage.  相似文献   

2.
The effects of 5-hydroxytryptamine and 5-hydroxytryptophan on 86Rb+ efflux from prelabelled ob/ob-mouse islets were studied to better understand the cellular mechanisms underlying the effects of 5-hydroxytryptamine and 5-hydroxytryptophan on insulin release. 5-Hydroxytryptophan (4 mM) had no effect on 86Rb+ efflux either at a low (3 mM) or at a high (20 mM) d-glucose concentration, whereas 5-hydroxytryptamine (4 mM) stimulated 86Rb+ efflux at both glucose concentrations. These results indicate that 5-hydroxytryptamine may reduce glucose-induced insulin release by inhibiting early steps in the β-cell stimulus-secretion coupling.  相似文献   

3.
The classic compartment analysis of ion efflux from roots is often applied with the assumption that there is a system of 3 compartments in series. However, complex ion transport across the root tissues, as well as influences from the shoot, may complicate the picture. The present experiments were performed to study the immediate effects that excision of the shoot before the experiment exerts on the efflux of Rb+(86Rb+) and of K+(86Rb+) from 9-day-old roots of plants of barley (Hordeum vulgare L. cv. Salve). The efflux from high K+ and low K+ roots of intact and detopped plants were compared. After excision of the shoot of high K+ plants, a marked increase in efflux was observed after 2.5 h with a maximum at about 7 h. The increase in efflux was seen as a peak in plots of efflux versus time. Excision of the shoot from low K+ roots did not give rise to a consistent increase in efflux. Regular K+ ion efflux curves were observed from roots of intact plants of high or low K+ status. Furthermore, after a pulse treatment of 9-day-old roots of intact plants of high or low K+ status with a solution containing Rb+(86Rb+), the Rb+(86Rb+) transport to the shoots was not reduced during the following 3 h in unlabelled solution. It is suggested that both the peak appearing in the efflux plots and the maintained tracer transport to the shoots after transfer of the roots to an unlabelled solution indicate the existence of a K+/Rb+ transport system in the symplasm of the roots that has only a slow exchange with the bulk cytoplasm and vacuoles.  相似文献   

4.
The mechanisms by which cationic amino acids influence pancreatic B-cell function have been studied by monitoring simultaneously 86Rb+ efflux and insulin release from perifused rat islets. The effects of two reference amino acids arginine and lysine were compared with those of closely related substances to define the structural requirements for recognition of these molecules as secretagogues. Arginine accelerated 86Rb+ efflux and increased insulin release in the absence or in the presence of 7mm-glucose. Its effects on efflux did not require the presence of extracellular Ca2+ or Na+, but its insulinotropic effects were suppressed in a Ca2+-free medium and inhibited in an Na+-free medium. Among arginine derivatives, only 2-amino-3-guanidinopropionic acid mimicked its effects on 86Rb+ efflux and insulin release; citrulline, guanidinoacetic acid, 3-guanidinopropionic acid and guanidine were inactive. Norvaline and valine also increased 86Rb+ efflux, but their effect required the presence of extracellular Na+; they did not stimulate insulin release. Lysine as well as the shorter-chain cationic amino acids ornithine and 2,4-diaminobutyric acid accelerated 86Rb+ efflux in a Ca2+- and Na+-independent manner. Their stimulation of insulin release was suppressed by Ca2+ omission, but only partially inhibited in an Na+-free medium. The uncharged glutamine and norleucine increased the rate of 86Rb+ efflux in the presence of glucose, only if extracellular Na+ was present. Norleucine slightly increased release in a Ca2+- and Na+-dependent manner. The effects of lysine on efflux and release were not mimicked by other related substances such as 1,5-diaminopentane and 6-aminohexanoic acid. The results suggest that the depolarizing effect of cationic amino acids is due to accumulation of these positively charged molecules in B-cells. This causes acceleration of the efflux of K+ (86Rb+) and activation of the influx of Ca2+ (which triggers insulin release). The prerequisite for the stimulation of B-cells by this mechanism appears to be the presence of a positive charge on the side chain of the amino acid, rather than a specific group.  相似文献   

5.
Oxidative stress to B-cells is thought to be of relevance in declining B-cell function and in the process of B-cell destruction. In other tissues including heart, brain and liver, oxidative stress has been shown to elevate the intracellular free calcium concentration and to provoke potassium efflux. We studied the effect of oxidative stress on Ca2+ and K+ (Rb+) outflow from pancreatic islets using the thiol oxidants DIP and BuOOH. Both compounds reversibly increased 86Rb+ efflux in the presence of 3 and 16.7 mmol/l glucose. Stimulation of 86Rb+ efflux was also evident in the absence of calcium. DIP evoked release of 45Ca2+ from the pancreatic islets both in the presence or absence of extracellular calcium. Employing inhibitors of the calcium-activated potassium channel (KCa) and the high conductance K+-channel (BKCa), the effect of DIP on 86Rb+ efflux was slightly diminished. Tolbutamide had no effect on 86Rb+ efflux in the presence of DIP. On the other hand thapsigargin, a blocker of the Ca2+-ATPase of the endoplasmic reticulum, completely suppressed the DIP-mediated 86Rb+ outflow. The data suggest that thiol oxidant-induced potassium efflux from pancreatic islets is mainly mediated through liberation of intracellular calcium and subsequent stimulation of calcium-activated potassium efflux.  相似文献   

6.
The valinomycin-induced K+ and Rb+ permeability in cells of Acholeplasma laidlawii B differing in fatty acid and cholesterol content was studied using three different techniques: (i) by following the swelling of the cells in potassium acetate optically; (iii) by recording the efflux of K+ using a potassium-selective glass electrode; and (ii) by measuring the efflux of Rb+ (after preincubation of the cells with 86Rb+) with a filter technique.If unsaturation of the membrane lipids was increased, the permeability was found to increase. Cholesterol appeared to cause a slight decrease in permeability.The valinomycin-induced efflux of K+ is gradually reduced when the temperature is lowered and becomes zero below the gel-liquid crystalline phase transition.  相似文献   

7.
K+ [86Rb+] uptake by Phaseolus aureus Roxb. hypocotyl segments cut immediately below the hook is inhibited by the active form of phytochrome (Pfr). Short load-short wash experiments indicate that the inhibition of uptake occurs across the plasmalemma. A maximal inhibition of short term uptake occurs in 10 to 50 millimolar KCI. Low temperature had only a small effect on influx and the inhibition of influx from 50 millimolar KCI. A consideration of the electrochemical gradient for K+ suggests that passive K+ fluxes may predominate under these conditions. Red light induces small depolarizations of membrane potential in subhook cells. Far red light antagonizes this effect. Pfr inhibits efflux of K+[86Rb+] from subhook segments. This effect is also relatively insensitive to low temperature. This inhibition of efflux may reflect inhibition of a K+ -K+ exchange process, or reduced passive permeability of the plasmalemma to K+. In contrast, Pfr enhances short term uptake of K+[86Rb+] in apical hypocotyl hook segments of Phaseolus aureus Roxb. Short load-short wash experiments indicate that fluxes across the plasmalemma are modified by Pfr. A maximal enhancement of short term influx occurs in 50 millimolar KCI. Influx and the red light enhancement of influx from 50 millimolar KCI are relatively insensitive to low temperature. Pfr also enhances efflux of K+[86Rb+] from preloaded apical hook segments. This increased influx may reflect enhancement of a K+ -K+ exchange process or increased passive permeability of the plasmalemma to K+.  相似文献   

8.
The fluxes of 22Na+ and 86Rb+ in Arbacia sperm and oocytes were studied in order to determine how these cells carry out cation exchange with the sea environment. The uptake of these ions by serum followed a pattern of early rapid influx (initial 0.5 min) and subsequent efflux (1–3 min) followed by a gradual uptake (after 3 min). Neither the uptake nor the efflux of these cations by Arbacia sperm were affected by ouabain, suggesting that influx and efflux of 22Na+ and 86Rb+ in Arbacia sperm occur predominantly by passive transport. The 22Na+ uptake by Arbacia oocytes showed a steady increase after an initial rapid uptake. A slight but significant inhibition of 22Na+ uptake was observed with ouabain. However, 86Rb+ uptake by the oocytes reached an early equilibrium and was not affected by ouabain. The uptake of Rb+ by Arbacia oocyte is by passive transport while that of Na+ is both by passive and active transport.  相似文献   

9.
The effects of 5-hydroxytryptamine and 5-hydroxytryptophan on 86Rb+ efflux from prelabelled ob/ob-mouse islets were studied to better understand the cellular mechanisms underlying the effects of 5-hydroxytryptamine and 5-hydroxytryptophan on insulin release. 5-Hydroxytryptophan (4 mM) had no effect on 86Rb+ efflux either at a low (3 mM) or at a high (20 mM) d-glucose concentration, whereas 5-hydroxytryptamine (4 mM) stimulated 86Rb+ efflux at both glucose concentrations. These results indicate that 5-hydroxytryptamine may reduce glucose-induced insulin release by inhibiting early steps in the β-cell stimulus-secretion coupling.  相似文献   

10.
The effect of acetylcholine and the cholecystokinin-like peptide, caerulein on the fractional efflux of 86Rb+ from preloaded isolated segments of mouse pancreas were studied. Both secretagogues evoked a marked transient increase in 86Rb+ efflux. The removal of Ca2+ from the superfusing medium and addition of 10?4 M EGTA, markedly reduced, but did not abolish the responses to either acetylcholine or caerulein. Furosemide (10?5?10?3M) or piretanide (10?4 M) reduced the basal efflux and inhibited the secretagogue-elicited responses. Stimulus-induced 86Rb+ outflow was abolished when the Cl? component of the superfusing solution was replaced by either NO3?, SO42? or I? but not in case of replacement by Br?, When Na+ was replaced with either Li+ or choline+ both acetylcholine and caerulein failed to elicit any detectable increase in 86Rb+ outflow. However, when Tris+ was substituted for Na+, acetylcholine caused a moderate increase in 86Rb+ efflux which was abolished by either furosemide (10?4 M) or chloride depletion (nitrate substitution). The removal of extracellular K+ or pretreatment with 10?3 M ouabain had little effect on secretagogue-evoked 86Rb+ efflux. These results indicate the presence of a diuretic-sensitive Na+-K+-Cl? cotransport system in the mouse pancreatic acinar cell membrane.  相似文献   

11.
F R Butcher 《Life sciences》1979,24(21):1979-1982
Stimulation of 86Rb+ efflux from isolated parotid acinar cells by carbchol was biphasic. The phases of stimulated 86Rb+ efflux were separated on the basis of their relative requirements for extracellular Ca2+. If the isolated cells were incubated in Ca2+ free buffer containing 1.0 mM ethylene glycol bis (β-aminoethyl ether) N, N1 - tetra acetic acid (EGTA) for 30 min. before adding carbachol an initial phase of 86Rb+ efflux was observed. A second phase of 86Rb+ efflux was obtained upon addition of 2.0 mM Ca2+. However when cells were incubated for 60 min. in Ca2+ free buffer containing 1.0 mM EGTA the initial phase of release caused by carbachol was inhibited by 95 percent. If the EGTA was titrated with Ca2+ to give 1.0 mM Ca2+, following the 60 min. depletion regimen, the second phase was observed. Although 60 min. of Ca2+-depletion in EGTA buffer was required for complete inhibition of the effect of carbachol on the initial phase of 86Rb+ efflux, the response was fully restored within 4 min. after the readdition of Ca2+.  相似文献   

12.
Abstract: The effects of four K+-channel inhibitors on synaptosomal free Ca2+ concentrations and 86Rb+ fluxes are analysed. 4-Aminopyridine, α-dendrotoxin, charybdotoxin, and tetraethylammonium all increase the free Ca2+ concentration, although their potencies differ widely. In each case, the elevation in free Ca2+ concentration is reversed by the subsequent addition of tetrodotoxin. The transient 86Rb+ efflux from preequilibrated synaptosomes induced with high concentrations of veratridine is partially inhibited by 4-aminopyridine and α-dendrotoxin. In contrast, when 4-aminopyridine or α-dendrotoxin is added to polarized synaptosomes, an enhanced86Rb+ flux is seen, both for uptake and for efflux with no change in the total 86Rb+/K+ content of the synaptosomes and with only a slight time-averaged plasma membrane depolarization (6.4 and 3.3 mV, respectively). The enhancements of flux by 4-aminopyridine or α-dendrotoxin are sensitive to ouabain and/or to tetrodotoxin. Furthermore, these flux changes show the same concentration dependencies as the blocked component of veratridine-stimulated 86Rb+ efflux, the elevation of free Ca2+ concentration, and the facilitation of glutamate exocytosis that are elicited by 4-aminopyridine or α-dendrotoxin. It is concluded that these findings support the proposal of spontaneous, repetitive firing of synaptosomes evoked by K+-channel inhibitors and that the enhanced 86Rb+ flux is a consequence of the activity of 4-aminopyridine- and α-dendrotoxin-insensitive K+ channels during these action potentials.  相似文献   

13.
The mechanism of the protective effect of Ca2+ on cellular K+ content was studied by examination of the effect of Ca2+ on efflux of the K+ analog, 86Rb+, from preloaded cells with the use of compounds which interfere with monovalent cation movements. Ca2+ decreased 86Rb+ efflux to the same extent in the presence and absence of ouabain, suggesting that Ca2+ did not alter the activity of the (Na+ + K+)-adenosine triphosphatase pump. Ca2+ exerted a similar protective effect in the presence of furosemide, an inhibitor of K+-K+ exchange, indicative that Ca2+ was not inhibiting this pathway. Since Ca2+ did not influence these pathways, it is concluded that Ca2+ exerts its primary effect by slowing passive diffusion. In support of this, Ca2+ also slowed 22Na+ efflux. In addition, ethanol-induced leakage of 86Rb+ was reversed by extracellular Ca2+, suggestive of a Ca2+-membrane phospholipid interaction.  相似文献   

14.
We have previously reported on the biochemical properties of a Na+,K+,2Cl?-cotransport in HeLa cells and here we deal with aspects of its physiological regulation. Na+,K+,2Cl?-cotransport in HeLa cells was studied by 86Rb+ influx and 86Rb+/22Na+ efflux measurements. The effects of rat atrial natriuretic peptide (ANP), isoproterenol, and amino acids on 86Rb+ flux, mediated by the bumet-anide-sensitive Na+, K+, 2Cl?-cotransport system and the ouabain-sensitive Na+/K+-pump, were investigated. ANP reduced bumetanide-sensitive 86Rb+ influx under isotonic as well as under hypertonic conditions. Similar decrease of bumetanide-sensitive 86Rb+ influx was observed in the presence of 8-bromo-cGMP, while neither isoproterenol as a β-receptor agonist nor 8-bromo-cAMP-could alter bumetanide-sensitive 86Rb+ influx. Furthermore, efflux of 86Rb+ and 22Na+ was greatly reduced in the presence of bumetanide and ANP. Together with our recent findings, showing functionally active, high affinity receptors for ANP on HeLa cells (Kort and Koch, Biochim. Biophys. Res. Commun. 168:148–154, 1990), this study indicates that ANP participates in the regulation of the Na+, K+, 2Cl?-cotransport system in HeLa cells. Further measurements revealed that amino acids as present in the growth medium (Joklik's minimal essential medium) and the amino acid derivative α-methyl-aminoisobutyric acid (metAlB, 1 and 5 mM, respectively) also reduced Na+, K+, 2Cl?-cotransport-mediated 86Rb+ uptake and diminished the stimulatory effect of hypertonicity on the cotransporter. In addition, the Na+/K+-pump was markedly stimulated in the presence of amino acids, while neither ANP and 8-Br-cGMP nor isoproterenol and 8-Br-cAMP had a significant effect on the activity of the Na+/K+-pump.  相似文献   

15.
It has recently been reported that plasmalemma electron transport may be involved in the generation of H+ gradients and the uptake of ions into root tissue. We report here on the influence of extracellular NADH and ferricyanide on K+ (86Rb+) influx, K+ (86Rb+) efflux, net apparent H+ efflux, and O2 consumption in 2-centimeter corn (Zea mays [A632 × Oh43]) root segments and intact corn roots. In freshly excised root segments, NADH had no effect on O2 consumption and K+ uptake. However, after the root segments were given a 4-hour wash in aerated salt solution, NADH elicited a moderate stimulation in O2 consumption but caused a dramatic inhibition of K+ influx. Moreover, net apparent H+ efflux was significantly inhibited following NADH exposure in 4-hour washed root segments.

Exogenous ferricyanide inhibited K+ influx in a similar fashion to that caused by NADH, but caused a moderate stimulation of net H+ efflux. Additionally, both reagents substantially altered K+ efflux at both the plasmalemma and tonoplast.

These complex results do not lend themselves to straightforward interpretation and are in contradiction with previously published results. They suggest that the interaction between cell surface redox reactions and membrane transport are more complex than previously considered. Indeed, more than one electron transport system may operate in the plasmalemma to influence, or regulate, a number of transport functions and other cellular processes. The results presented here suggest that plasmalemma redox reactions may be involved in the regulation of ion uptake and the `wound response' exhibited by corn roots.

  相似文献   

16.
Lepe BG  Avila EJ 《Plant physiology》1975,56(4):460-463
It has been shown that plants can accumulate K+ through an energy-dependent process. The effect of alkylguanidines, in particular octylguanidine on the uptake of 86Rb+ by excised barley roots (Hordeum vulgare var. Apizaco LV-72), has been studied. 86Rb+ was used as tracer of K+. The uptake of 86Rb+ which is linear with time and shows saturation kinetics is inhibited by octylguanidine. Half-maximal inhibition of 86Rb+ uptake is attained at 50 μM octylguanidine. Octylguanidine induces a decrease in the Vmax of the process and increases the Km of the system for Rb+. When the effects of various alkylguanidines were studied, the following order of effectiveness was encountered; octylguanidine = hexilguanidine > butylguanidine > ethylguanidine > guanidine. This suggests that guanidines inhibit Rb+ uptake by interacting through its positively charged guanidinium group with a Rb+ carrier while the alkyl chain interacts with the hydrophobic milieu of the membrane.  相似文献   

17.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

18.
Orr GL  Hess FD 《Plant physiology》1982,69(2):502-507
Cucumber (Cucumis sativus L.) cotyledons were sensitive to the diphenyl ether herbicide acifluorfen-methyl (AFM); methyl 5-[2-chloro-4-(trifluoro-methyl)phenoxyl-2-nitrobenzoate. Injury was detected by monitoring the efflux of 86Rb+ from treated tissues after exposure to light (600 micro einsteins per meter2 per second; photosynthetically active radiation).  相似文献   

19.
The effect of a hyposmotic shock and extracellular ATP on the efflux of K+(Rb+) from human breast cancer cell lines (MDA-MB-231 and MCF-7) has been examined. A hyposmotic shock increased the fractional efflux of K+(Rb+) from MDA-MB-231 cells via a pathway which was unaffected by Cl replacement. Apamin, charybdotoxin or removing extracellular Ca2+ had no effect on volume-activated K+(Rb+) efflux MDA-MB-231 cells. An osmotic shock also stimulated K+(Rb+) efflux from MCF-7 cells but to a much lesser extent than found with MDA-MB-231 cells. ATP-stimulated K+(Rb+) efflux from MDA-MB-231 cells in a dose-dependent fashion but had little effect on K+(Rb+) release from MCF-7 cells. ATP-stimulated K+(Rb+) efflux was only inhibited slightly by replacing Cl with NO3. Removal of external Ca2+ during treatment with ATP reduced the fractional efflux of K+(Rb+) in a manner suggesting a role for cellular Ca2+ stores. Charybdotoxin, but neither apamin nor iberiotoxin, inhibited ATP-stimulated K+(Rb+) release from MDA-MB-231 cells. Suramin inhibited the ATP-activated efflux of K+(Rb+). UTP also stimulated K+(Rb+) efflux from MDA-MB-231 cells whereas ADP, AMP and adenosine were without effect. A combination of an osmotic shock and ATP increased the fractional efflux of K+(Rb+) to a level greater than the sum of the individual treatments. It appears that the hyposmotically-activated and ATP-stimulated K+ efflux pathways are separate entities. However, there may be a degree of ‘crosstalk’ between the two pathways.  相似文献   

20.
Summary 86Rb+ fluxes have been measured in suspensions of vesicles prepared from the epithelium of toad urinary bladder. A readily measurable barium-sensitive, ouabain-insensitive component has been identified; the concentration of external Ba2+ required for half-maximal inhibition was 0.6mm. The effects of externally added cations on86Rb+ influx and efflux have established that this pathway is conductive, with a selectivity for K+, Rb+ and Cs+ over Na+ and Li+. the Rb+ uptake is inversely dependent on external pH, but not significantly affected by internal Ca2+ or external amiloride, quinine, quinidine or lidocaine. It is likely, albeit not yet certain, that the conductive Rb+ pathway is incorporated in basolateral vesicles oriented right-side-out. It is also not yet clear whether this pathway comprises the principle basolateral K+ channel in vivo, and that its properties have been unchanged during the preparative procedures. Subject to these caveats, the data suggest that the inhibition by quinidine of Na+ transport across toad bladder does not arise primarily from membrane depolarization produced by a direct blockage of the basolateral channels. It now seems more likely that the quinidine-induced elevation of intracellular Ca2+ activity directly blocks apical Na+ entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号