首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glomerular mesangial cell: an expanding role for a specialized pericyte   总被引:32,自引:0,他引:32  
The mesangial cell occupies a central position in the renal glomerulus. It has characteristics of a modified smooth muscle cell, but is also capable of a number of other functions. Among these are generation of prostaglandins (PGs) and mediators of inflammation; production and breakdown of basement membrane and other biomatrix material; synthesis of cytokines; and uptake of macromolecules, including immune complexes. In terms of its smooth muscle activity, the mesangial cell contracts or relaxes in response to a number of vasoactive agents. This ability allows the cells to modify glomerular filtration locally. The cellular mechanism of action of many agents influencing mesangial cells involves activation of phospholipase C for phosphatidylinositol 4,5-bisphosphate. This results in generation of inositol trisphosphate and release of intracellular calcium. Mesangial cell relaxation can be mediated by enhanced cAMP or cGMP generation. Many vasoactive substances also stimulate PG production by mesangial cells. This involves activation of both phospholipase C and A2, the latter being responsible for the release of arachidonic acid. Mesangial cells are also capable of endocytosis of macromolecules, including immune complexes. This is initiated by binding to a specific receptor, resulting in formation of PG, platelet-activating factor, and reactive oxygen species. Mesangial cells can generate interleukin 1 and platelet-derived growth factor and respond to these in an autocrine manner. Thus, the mesangial cell not only can control glomerular filtration, but may also be involved in the response to local injury, including cell proliferation and basement membrane remodeling.  相似文献   

2.
The proteins expressing interleukin 1 (IL 1) activity from rat peritoneal macrophages and cultured glomerular mesangial cells were compared after purification to apparent homogeneity. The purified IL 1 shared a number of biochemical features including m.w., charge, and specific activity. These findings were extended by the results of proteolytic peptide mapping, which revealed similar breakdown oligopeptides, confirming the close resemblance of these two IL 1 species produced by macrophages and mesangial cells. The purified mesangial cell IL 1 acts as an autocrine or paracrine growth factor. The local release of this cytokine may be an important factor in glomerular diseases characterized by mesangial proliferation and matrix expansion.  相似文献   

3.
4.
Kamanna VS  Bassa BV  Ganji SH 《Life sciences》2008,83(17-18):595-601
Hyperlipidemia and the glomerular accumulation of atherogenic lipoproteins (low density lipoprotein, LDL; and its oxidatively-modified variants, ox-LDL) are commonly associated with the development of glomerular mesangial proliferative diseases. However, cellular signaling mechanisms by which atherogenic lipoproteins stimulate mesangial cell proliferation are poorly defined. In this study, we examined the effect of atherogenic lipoproteins on the activation of mesangial cell epidermal growth factor (EGF) receptor, mitogen activated protein kinase (MAP kinase), Ras, and mesangial cell proliferation. Stimulation of mesangial cells with LDL, and with greater activity, ox-LDL, markedly induced the transactivation of EGF receptor within 5 min of stimulation; the effect persisted up to at least 60 min LDL, and with a greater degree, ox-LDL, increased the activation of Ras, MAP kinase, and mesangial cell proliferation. Inhibition of EGF receptor kinase activity and/or MAP kinase activation blocked both LDL- and ox-LDL-induced mesangial cell proliferation. We suggest that the accumulation of LDL and more potently its oxidized forms within the glomerulus, through the transactivation of EGF receptor, stimulate down-stream Ras-MAP kinase signaling cascade leading to mesangial cell proliferation. Regulation of glomerular accumulation of atherogenic lipoproteins and/or EGF receptor signaling may provide protective environment against mesangial hypercellularity seen in glomerular diseases.  相似文献   

5.
Stimulation of rat mesangial cell proliferation by macrophage interleukin 1   总被引:31,自引:0,他引:31  
Conditioned media from LPS-activated rat peritoneal macrophages enhanced the proliferation rates of cultured rat glomerular mesangial cells. This macrophage-derived activity extensively co-purified with interleukin 1 (IL 1) activity through sequential ammonium sulfate precipitation, S-200 gel chromatography, DEAE-cellulose anion exchange chromatography, and phenyl-Sepharose chromatography. In addition, the macrophage-derived factor was heat-labile (80 degrees C) and inactivated by phenylglyoxal, thus allowing tentative identification as IL 1. Macrophage supernatants and purified IL 1 enhanced the proliferative rates of mesangial cells only in the presence of serum; the use of platelet-poor plasma or serum depleted of platelet-derived growth factor was without effect. IL 1 acted to increase the percentage of cycling cells, without a change in the length of the individual cell cycle times. These findings provide a potential mechanism whereby activated macrophages, in combination with platelet factors, enhance mesangial cell proliferation. Such processes may contribute to the mesangial hypercellularity frequently found in immune-mediated glomerulonephritis.  相似文献   

6.
Treatment of rat glomerular mesangial cells with recombinant human interleukin 1 alpha (rIL-1 alpha), recombinant human interleukin 1 beta (rIL-1 beta) or recombinant human tumor necrosis factor (rTNF) induces prostaglandin E2 (PGE2) synthesis and the release of a phospholipase A2 (PLA2) activity. rIL-1 beta is significantly more potent than rIL-1 alpha or rTNF in stimulating PGE2 as well as PLA2 release from mesangial cells. When given together, rTNF interacts in a synergistic fashion with rIL-1 alpha and rIL-1 beta to enhance both, PGE2 synthesis and PLA2 release. The released PLA2 has a neutral pH optimum and is calcium-dependent. Pretreatment of cells with actinomycin D or cycloheximide inhibits basal and cytokine-stimulated PGE2 and PLA2 release.  相似文献   

7.
The physiopathological mechanisms of idiopathic nephrotic syndrome involve a circulating plasma factor and a decrease in HS in the glomerular basement membrane. Previous studies have demonstrated that plasma from patients with INS decreases glomerular cell HS in vitro. We examined the involvement of cyclic adenosine monophosphate (cAMP) in this interaction. We studied the effect of plasma from patients with INS on mesangial cell cAMP. We also determined mesangial cell HS when cAMP levels were modified using a cationic membrane after metabolic labeling. Cellular cAMP levels increased significantly when mesangial cells were incubated with plasma from patients with INS in comparison with control plasma (+77%, P = 0.01). Forskolin and IBMX, which increased cellular cAMP, decreased HS levels (-21 +/- 9% and -15 +/- 6% respectively, P < 0.05 for both), whereas dideoxyadenosine, which decreased cellular cAMP, increased HS levels (+24 +/- 7%, P < 0.05). Plasma from patients with INS decreased glomerular cell HS in comparison with control plasma (-34 +/- 8%, P < 0,05). This effect was abolished when cells were preincubated with ddAdo to prevent an increase in cAMP levels. We conclude that in mesangial cells, plasma from patients with INS increases cAMP levels, and that cAMP mediates a decrease in HS levels. Moreover, the action of plasma from patients on HS was inhibited when an increase in cAMP was prevented. cAMP may therefore be instrumental in the negative effect of the plasma factor on mesangial cell HS.  相似文献   

8.
Cyclooxygenase-2 (COX-2) is an inducible enzyme and serves as a source of paracrine prostaglandin E2 (PGE2) formation in many tissues. In glomerular immune injury COX-2 formation is up-regulated in association with increased mesangial cell growth. To examine whether COX-2 exerts growth modulating effects on glomerular cells, we established two separate COX-2-overexpressing mesangial cell lines (COX-2+) and assessed their proliferative response to the potent mesangial cell growth-promoting factor, platelet-derived growth factor (PDGF). PDGF increased proliferation in mock-transfected cells. In contrast, PDGF did not induce proliferation in COX-2+ cells. Our results also showed that the tumor suppressor protein p53 and the cyclin-dependent kinase inhibitors p21(cip-1) and p27(kip-1) were up-regulated in COX-2+ cells de novo as well as under PDGF-stimulated conditions. To study whether COX-2 products are required for these effects, COX-2+ cells were treated with indomethacin (1 microg/ml) or NS-398 (3 microm). Unexpectedly, both COX inhibitors had no significant effect on cell proliferation, not on the protein levels of p53, p21(cip-1), or p27(kip-1). To evaluate the role of p21(cip-1) and p27(kip-1), COX-2 was overexpressed in mesangial cells derived from p21(cip-1) (p21-/- COX-2+) and p27(kip-1) (p27-/- COX-2+) null mice. In contrast to the wild type COX-2+ cells, p21-/- COX-2+ and p27-/- COX-2+ cells proliferated in response to PDGF. These data suggest that COX-2 inhibits mesangial cell proliferation by a novel mechanism that is independent of prostaglandin synthesis, but involves p53, p21(cip-1), and p27(kip-1).  相似文献   

9.
10.
Transforming growth factor beta (TGF-β) has been recognized as an important mediator in the genesis of chronic kidney diseases (CKD), which are characterized by the accumulation of extracellular matrix (ECM) components in the glomeruli (glomerular fibrosis, glomerulosclerosis) and the tubular interstitium (tubulointerstitial fibrosis). Glomerulosclerosis is a major cause of glomerular filtration rate reduction in CKD and all three major glomerular cell types (podocytes or visceral epithelial cells, mesangial cells and endothelial cells) participate in the fibrotic process. TGF-β induces (1) podocytopenia caused by podocyte apoptosis and detachment from the glomerular basement membrane; (2) mesangial expansion caused by mesangial cell hypertrophy, proliferation (and eventually apoptosis) and ECM synthesis; (3) endothelial to mesenchymal transition giving rise to glomerular myofibroblasts, a major source of ECM. TGF-β has been shown to mediate several key tubular pathological events during CKD progression, namely fibroblast proliferation, epithelial to mesenchymal transition, tubular and fibroblast ECM production and epithelial cell death leading to tubular cell deletion and interstitial fibrosis. In this review, we re-examine the mechanisms involved in glomerulosclerosis and tubulointerstitial fibrosis and the way that TGF-β participates in renal fibrosis, renal parenchyma degeneration and loss of function associated with CKD.  相似文献   

11.
Random bred Swiss-Webster mice were immunized with either autologous (MFN) or heterologous guinea pig (GPFN) denatured serum fibronectin. Immunofluorescent, light and electron microscopic examination of renal tissues demonstrated glomerular changes, consisting primarily of endothelial and mesangial cell hypertrophy with expansion of the mesangial matrix. Evagination of mesangial cytoplasm into capillary lumens and balloon-like structures were characteristic of affected glomeruli. The histopathologic alterations were present in varying degrees of severity of all fibronectin treated animals, with slightly more extensive glomerular proliferation seen in animals immunized with heterologous (GPFN) fibronectin as compared to mice immunized with autologous (MFN) protein. Perivascular mononuclear cell infiltration with edematous changes in medial smooth muscle cells occurred in renal vessels. The vasculature of the liver and lung also showed mononuclear cell infiltrates in the adventitia. These studies lead us to conclude that an immune response to either heterologous or autologous denatured serum fibronectin can induce glomerular sclerotic changes, cellular hyperplasia, and vascular injury.  相似文献   

12.
13.
Recent data have implicated nuclear factor kappaB (NF-kappaB) in the prevention of apoptosis in transformed cell lines exposed to tumor necrosis factor alpha (TNF-alpha). However, it is obscure whether NF-kappaB plays an anti-apoptotic role in nontransformed cells, and it is not clear whether NF-kappaB inhibits apoptosis triggered by other mediators. We investigated the effect of specific inhibition of NF-kappaB on cytokine-induced apoptosis of glomerular mesangial cells, which is important in determining the outcome of glomerulonephritis. Cultured rat mesangial cells were stably transfected with the dominant negative mutant inhibitor of NF-kappaB (IkappaBalphaM). IkappaBalphaM was resistant to stimulus-dependent degradation and suppressed NF-kappaB activation induced by TNF-alpha (10 ng/ml) or IL-1beta (10 ng/ml). IkappaBalphaM significantly sensitized mesangial cells to TNF-alpha-induced apoptosis in a dose- and time-dependent manner but had no significant effects on the level of apoptosis in the presence of proinflammatory or apoptosis-inducing stimuli including Fas ligand, IL-1alpha, IL-1beta, hydrogen peroxide, lipopolysaccharide, cycloheximide, or serum deprivation. Moreover, IkappaBalphaM-mediated sensitization to TNF-alpha overcame the protective effect of mesangial cell survival factors present in serum, which usually inhibit killing of mesangial cells by the proapoptotic stimuli used. These data show that inhibition of NF-kappaB selectively sensitizes primary adult glomerular mesangial cells to TNF-induced apoptosis but not to other mediators of cell death including the Fas ligand.  相似文献   

14.
Mesangial cell has several key roles in the control of glomerular function: it participates in the regulation of glomerular filtration rate, macromolecular clearance, and as both a source and target of numerous hormones and autocrines. Many of these insights into mesangial cell function have been obtained by studying mesangial cells in culture. However, no suitable cell lines have been established yet. We here reported the immortalization of rat kidney glomerular mesangial cell by transfection of E6 and E7 genes of human papillomavirus type 16 (HPV-16) via electroporation and lipofection. The results showed that only electroporation could transfect the genes to mesangial cells and the transfected cells maintained the viability for longer than 6 months. Fluorescence microscopic observation showed that cellular contractility and phagocytosis, which are the two main phenotypes of mesangial cells, are well maintained after transfection. The coculture of transfected mesangial cells with rat glomerular epithelial cells showed that the growth of mesangial cells was suppressed by epithelial cell, but the growth of epithelial cells was enhanced by mesangial cells. Moreover, an enhancing effect on the phagocytosis of mesangial cell was also observed in coculture. Such results may imply that the glomerular cell-cell interaction plays an important role in the regulation of cell proliferation and differentiation.  相似文献   

15.
The glomerulus is a complex structure including four cell types, namely mesangial, visceral epithelial, parietal epithelial and endothelial cells. Mesangial cells resemble smooth muscle cells and play a major role in the synthesis of the components of the glomerular basement membrane and in the vasoreactivity of the glomerular tuft. In particular, they express receptors for angiotensin II which mediate mesangial cell contraction, this effect resulting in the decrease of the filtration area. They are also the site of synthesis of a variety of inflammatory agents which are involved in the development of glomerular injury in glomerulonephritis. Visceral epithelial cells, also referred to a podocytes, also participate in the synthesis of the normal constituents of the glomerular basement membrane. They express receptors for atrial natriuretic factor and possess on their surface a number of ectoenzymes. They also, in concert with mesangial cells, release metalloproteases which contribute to the degradation of the extracellular matrix. Parietal epithelial cells have been little studied. They represent the main constituent of the crescents observed in extracapillary proliferative glomerulonephritis. Endothelial cells secrete vasodilatory agents such as nitric oxide and prostacyclin and vasoconstrictor agents such as endothelin which act on the adjacent mesangial cells. New methods of culture of glomerular cells are in progress. Their aim is to keep as long as possible the physiological phenotype of these cells. Another progress is the availability of stable transformed cell lines which represent an abundant source of material for biochemical studies.  相似文献   

16.
17.
18.
The aim of this study was to establish an immortalized human mesangial cell line similar to mesangial cells in vivo for use as a tool for understanding glomerular cell function. Mesangial cells were isolated from glomerular outgrowths from a normal human kidney, then retrovirally transfected with a temperature-sensitive SV40T antigen+human telomerase (hTERT). Mesangial cells exhibited features of compact cells with small bodies in a confluent monolayer at 33°C, but the cell shape changed to flat and stellate after 5 days in growth-restrictive conditions (37°C). Western blot and immunofluorescence analysis showed that podocyte markers (nephrin, CD2AP, podocin, Wilms' tumor-1) and an endothelial-specific molecule (VE-cadherin) were not detectable in this cell line, whereas markers characteristic of mesangial cells (α-SMA, fibronectin, and PDGFβ-R) were strongly expressed. In migration assays, a significant reduction in wound surface was observed in podocyte and endothelial cells as soon as 12 h (75 and 62%, respectively) and complete wound closure after 24 h. In contrast, no significant change was observed in mesangial cells after 12 h, and even after 48 h the wounds were not completely closed. Until now, conditionally immortalized podocyte and endothelial cell lines derived from mice and humans have been described, and this has greatly boosted research on glomerular physiology and pathology. We have established the first conditionally immortalized human glomerular mesangial cell line, which will be an important adjunct in studies of representative glomerular cells, as well as in coculture studies. Unexpectedly, mesangial cells' ability to migrate seems to be slower than for other glomerular cells, suggesting this line will demonstrate functional properties distinct from previously available mesangial cell cultures. This conditionally immortalized human mesangial cell line represents a new tool for the study of human mesangial cell biology in vitro.  相似文献   

19.
Platelet-derived growth factor (PDGF) B-chain and PDGF receptor beta (PDGFR beta) are essential for glomerulogenesis. Mice deficient in PDGF B-chain or PDGFR beta exhibit an abnormal glomerular phenotype characterized by total lack of mesangial cells. In this study, we localized PDGFR beta in the developing rat kidney and explored the biological effects of PDGF in metanephric mesenchymal cells in an attempt to determine the mechanism by which PDGF regulates mesangial cell development. Immunohistochemical and in situ hybridization studies of rat embryonic kidneys reveal that PDGFR beta localizes to undifferentiated metanephric mesenchyme and is later expressed in the cleft of the comma-shaped and S-shaped bodies and in more mature glomeruli in a mesangial distribution. We also isolated and characterized cells from rat metanephric mesenchyme. Metanephric mesenchymal cells express vimentin and alpha-smooth muscle actin but not cytokeratin. These cells also express functional PDGFR beta, as demonstrated by autophosphorylation of the receptor as well as activation of phosphatidylinositol 3 kinase in response to PDGF B-chain homodimer. PDGF B-chain also induces migration and proliferation of metanephric mesenchymal cells. Taken together with the fact that PDGF B-chain is expressed in the glomerular epithelium and mesangial area, as demonstrated in the human embryonic kidney, we suggest that PDGF B-chain acts in a paracrine fashion to stimulate the migration and proliferation of mesangial cell precursors from undifferentiated metanephric mesenchyme to the mesangial area. PDGF B-chain also likely stimulates proliferation of mesangial cell precursors in an autocrine fashion once these cells migrate to the glomerular tuft.  相似文献   

20.
Hydrogen peroxide-inducible clone-5 (Hic-5) is a transforming growth factor (TGF)-β1-inducible focal adhesion protein. We previously demonstrated that Hic-5 was localized in mesangial cells and its expression was associated with glomerular cell proliferation and matrix expansion in human and rat glomerulonephritis (GN). In the present study, we first assessed the role of Hic-5 in mesangioproliferative GN by injecting Habu venom into heminephrectomized wild type (Hic-5+/+) and Hic-5-deficient (Hic-5-/-) mice. Hic-5+/+ GN mice exhibited glomerular cell proliferation on day 7. Surprisingly, glomerular cell number and Ki-67-positive cells in Hic-5-/- GN mice were significantly greater than those in Hic-5+/+ GN mice on day 7, although the number of glomerular apoptotic cells and the expression of growth factors (platelet-derived growth factor-BB and TGF-β1) and their receptors were similarly increased in both Hic-5+/+ and Hic-5-/- GN mice. In culture experiments, proliferation assays showed that platelet-derived growth factor-BB and TGF-β1 enhanced the proliferation of Hic-5-/- mesangial cells compared with Hic-5+/+ mesangial cells. In addition, mitogenic regulation by Hic-5 was associated with altered and coordinated expression of cell cycle-related proteins including cyclin D1 and p21. The present results suggest that Hic-5 might regulate mesangial cell proliferation in proliferative GN in mice. In conclusion, modulation of Hic-5 expression might have a potential to prevent mesangial cell proliferation in the acute mitogenic phase of glomerulonephritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号