首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we have spectroscopically characterised CYP157C1 from Streptomyces coelicolor A3(2) which has the motif E(297)QSLW(301) rather than the invariant EXXR motif in the P450 K-helix. Site-directed mutagenesis of native E(297)QSLW(301) in CYP157C1 to E(297)ESLR(301) or E(297)QSRW(301) both containing standard EXXR motifs produced cytochrome P420 proteins thought to be inactive forms of P450 even though wild type CYP157C1 has the spectral properties of a normal P450. These results indicate that the EXXR motif is not required in all CYP tertiary architectures and only a single cysteine residue, which coordinates as the fifth thiolate ligand to the P450 haem iron, is invariant in all CYPs structures.  相似文献   

2.
Yang Y  Chakravorty DK  Merz KM 《Biochemistry》2010,49(44):9658-9666
Studies aimed at elucidating the unknown Mg2+ binding site in protein farnesyltransferase (FTase) are reported. FTase catalyzes the transfer of a farnesyl group to a conserved cysteine residue (Cys1p) on a target protein, an important step for proteins in the signal transduction pathways (e.g., Ras). Mg2+ ions accelerate the protein farnesylation reaction by up to 700-fold. The exact function of Mg2+ in catalysis and the structural characteristics of its binding remain unresolved to date. Molecular dynamics (MD) simulations addressing the role of magnesium ions in FTase are presented, and relevant octahedral binding motifs for Mg2+ in wild-type (WT) FTase and the Dβ352A mutant are explored. Our simulations suggest that the addition of Mg2+ ions causes a conformational change to occur in the FTase active site, breaking interactions known to keep FPP in its inactive conformation. Two relevant Mg2+ ion binding motifs were determined in WT FTase. In the first binding motif, WT1, the Mg2+ ion is coordinated to D352β, zinc-bound D297β, two water molecules, and one oxygen atom from the α- and β-phosphates of farnesyl diphosphate (FPP). The second binding motif, WT2, is identical with the exception of the zinc-bound D297β being replaced by a water molecule in the Mg2+ coordination complex. In the Dβ352A mutant Mg2+ binding motif, D297β, three water molecules, and one oxygen atom from the α- and β-phosphates of FPP complete the octahedral coordination sphere of Mg2+. Simulations of WT FTase, in which Mg2+ was replaced by water in the active site, recreated the salt bridges and hydrogen-bonding patterns around FPP, validating these simulations. In all Mg2+ binding motifs, a key hydrogen bond was identified between a magnesium-bound water and Cys1p, bridging the two metallic binding sites and, thereby, reducing the equilibrium distance between the reacting atoms of FPP Cys1p. The free energy profiles calculated for these systems provide a qualitative understanding of experimental results. They demonstrate that the two reactive atoms approach each other more readily in the presence of Mg2+ in WT FTase and mutant. The flexible WT2 model was found to possess the lowest barrier toward the conformational change, suggesting it is the preferred Mg2+ binding motif in WT FTase. In the mutant, the absence of D352β makes the transition toward a conformational change harder. Our calculations find support for the proposal that D352β performs a critical role in Mg2+ binding and Mg2+ plays an important role in the conformational transition step.  相似文献   

3.
Differential roles of the NPXXY motif in formyl peptide receptor signaling   总被引:1,自引:0,他引:1  
The NPXXY motif (X represents any amino acid) in the seventh transmembrane domain of the chemotactic formyl peptide receptor (FPR) is highly conserved among G protein-coupled receptors. Recent work suggested that this motif contributes to G protein-coupled receptor internalization and signal transduction; however, its role in FPR signaling remains unclear. In this study we replaced Asn(297) and Tyr(301) in the NPXXY motif of the human FPR with Ala (N297A) and Ala/Phe (Y301A/Y301F), respectively, and determined the effects of the substitutions on FPR functions in transfected rat basophilic leukemia cells. Whereas all the mutant receptors were expressed on the cell surface, the N297A receptor exhibited reduced binding affinity and was unable to mediate activation of phospholipase C-beta and the p42/44 mitogen-activated protein kinase (MAP kinase). The Y301F receptor displayed significantly decreased ligand-stimulated internalization and MAP kinase activation, suggesting that the hydrogen bonding at Tyr(301) is critical for these functions. The Y301F receptor showed a chemotactic response similar to that of wild-type FPR, indicating that cell chemotaxis does not require receptor internalization and hydrogen bonding at the Tyr(301) position. In contrast, the Y301A receptor displayed a left-shifted, but overall reduced, chemotaxis response that peaked at 0.1-1 nM. Finally, using a specific MAP kinase kinase inhibitor, we found that activation of MAP kinase is required for efficient FPR internalization, but is not essential for chemotaxis. These findings demonstrate that residues within the NPXXY motif differentially regulate the functions of FPR.  相似文献   

4.
In humans and Saccharomyces cerevisiae the free glycosylphosphatidylinositol (GPI) lipid precursor contains several ethanolamine phosphate side chains, but these side chains had been found on the protein-bound GPI anchors only in humans, not yeast. Here we confirm that the ethanolamine phosphate side chain added by Mcd4p to the first mannose is a prerequisite for the addition of the third mannose to the GPI precursor lipid and demonstrate that, contrary to an earlier report, an ethanolamine phosphate can equally be found on the majority of yeast GPI protein anchors. Curiously, the stability of this substituent during preparation of anchors is much greater in gpi7Delta sec18 double mutants than in either single mutant or wild type cells, indicating that the lack of a substituent on the second mannose (caused by the deletion of GPI7) influences the stability of the one on the first mannose. The phosphodiester-linked substituent on the second mannose, probably a further ethanolamine phosphate, is added to GPI lipids by endoplasmic reticulum-derived microsomes in vitro but cannot be detected on GPI proteins of wild type cells and undergoes spontaneous hydrolysis in saline. Genetic manipulations to increase phosphatidylethanolamine levels in gpi7Delta cells by overexpression of PSD1 restore cell growth at 37 degrees C without restoring the addition of a substituent to Man2. The three putative ethanolamine-phosphate transferases Gpi13p, Gpi7p, and Mcd4p cannot replace each other even when overexpressed. Various models trying to explain how Gpi7p, a plasma membrane protein, directs the addition of ethanolamine phosphate to mannose 2 of the GPI core have been formulated and put to the test.  相似文献   

5.
Glycosylphosphatidylinositol (GPI) anchors are attached to newly synthesized proteins in the ER by a transamidation reaction during which a C-terminal GPI attachment signal is replaced by a preformed GPI precursor lipid. This reaction depends on GAA1 and GPI8, the latter belonging to a novel cysteine protease family. Homologies between this family and other Cys proteinases, such as caspases, pointed to Cys199 and His157 as potential active site residues. Indeed, gpi8 alleles mutated at Cys199 or His157 are nonfunctional, i.e., they are unable to suppress the lethality of Deltagpi8 mutants. The overexpression of these nonfunctional alleles in wild-type cells leads to the accumulation of the free GPI precursor lipid CP2, delays the maturation of the GPI protein Gas1p, and arrests cell growth. The dominant negative effect of the Cys199 mutant cannot be overcome by the simultaneous overexpression of Gaa1p. Most GPI8 alleles mutated in other conserved regions of the protein can complement the growth defect of Deltagpi8, but nevertheless accumulate CP2. CP2 accumulation, a delay in Gas1p maturation and a slowing of cell growth can also be observed when Gpi8p is depleted to 50% of its normal level in wild-type cells. The dominant negative effect of nonfunctional and partially functional mutant alleles can best be explained by assuming that Gpi8p works as part of a homo- or heteropolymeric complex.  相似文献   

6.
The periplasmic C-terminal domain of the Escherichia coli DsbD protein (cDsbD) has a thioredoxin fold. The two cysteine residues in the CXXC motif serve as the reductant for the disulfide bond of the N-terminal domain which can in turn act as a reductant for various periplasmic partners. The resulting disulfide bond in cDsbD is reduced via an unknown mechanism by the transmembrane helical domain of the protein. We show by NMR analysis of (13)C, (15)N-labelled cDsbD that the protein is rigid, is stable to extremes of pH and undergoes only localized conformational changes in the vicinity of the CXXC motif, and in adjacent regions of secondary structure, upon undergoing the reduced/oxidized transition. pK(a) values have been determined, using 2D NMR, for the N-terminal cysteine of the CXXC motif, Cys461, as well as for other active-site residues. It is demonstrated using site-directed mutagenesis that the negative charges of the side-chains of Asp455 and Glu468 in the active site contribute to the unusually high pK(a) value, 10.5, of Cys461. This value is higher than expected from knowledge of the reduction potential of cDsbD. In a double mutant of cDsbD, D455N/E468Q, the pK(a) value of Cys461 is lowered to 8.6, a value close to that expected for an unperturbed cysteine residue. The pK(a) value of the second cysteine in wild-type cDsbD, Cys464, is significantly higher than the maximum pH value that was studied (pH 12.2).  相似文献   

7.
Activation of family A G-protein-coupled receptors involves a rearrangement of a conserved interhelical cytoplasmic hydrogen bond network between the E(D)RY motif on transmembrane helix 3 (H3) and residues on H6, which is commonly termed the cytoplasmic “ionic lock.” Glu1343.49 of the E(D)RY motif also forms an intrahelical salt bridge with neighboring Arg1353.50 in the dark-state crystal structure of rhodopsin. We examined the roles of Glu1343.49 and Arg1353.50 on H3 and Glu2476.30 and Glu2496.32 on H6 on the activation of rhodopsin using Fourier transform infrared spectroscopy of wild-type and mutant pigments reconstituted into lipid membranes. Activation of rhodopsin is pH-dependent with proton uptake during the transition from the inactive Meta I to the active Meta II state. Glu1343.49 of the ERY motif is identified as the proton-accepting group, using the Fourier transform infrared protonation signature and the absence of a pH dependence of activation in the E134Q mutant. Neutralization of Arg1353.50 similarly leads to pH-independent receptor activation, but with structural alterations in the Meta II state. Neutralization of Glu2476.30 and Glu2496.32 on H6, which are involved in interhelical interactions with H3 and H7, respectively, led to a shift toward Meta II in the E247Q and E249Q mutants while retaining the pH sensitivity of the equilibrium. Disruption of the interhelical interaction of Glu2476.30 and Glu2496.32 on H6 with H3 and H7 plays its role during receptor activation, but neutralization of the intrahelical salt bridge between Glu1343.49 and Arg1353.50 is considerably more critical for shifting the photoproduct equilibrium to the active conformation. These conclusions are discussed in the context of recent structural data of the β2-adrenergic receptor.  相似文献   

8.
We report that the NAD-dependent Escherichia coli DNA ligase can support the growth of Saccharomyces cerevisiae strains deleted singly for CDC9 or doubly for CDC9 plus LIG4. Alanine-scanning mutagenesis of E.coli DNA ligase led to the identification of seven amino acids (Lys115, Asp117, Asp285, Lys314, Cys408, Cys411 and Cys432) that are essential for nick-joining in vitro and for in vivo complementation in yeast. The K314A mutation uniquely resulted in accumulation of the DNA-adenylate intermediate. Alanine substitutions at five other positions (Glu113, Tyr225, Gln318, Glu319 and Cys426) did not affect in vivo complementation and had either no effect or only a modest effect on nick-joining in vitro. The E113A and Y225A mutations increased the apparent K (m)for NAD (to 45 and 76 microM, respectively) over that of the wild-type E. coli ligase (3 microM). These results are discussed in light of available structural data on the adenylylation domains of ATP- and NAD-dependent ligases. We observed that yeast cells containing only the 298-amino acid Chlorella virus DNA ligase (a 'minimal' eukaryotic ATP-dependent ligase consisting only of the catalytic core domain) are relatively proficient in the repair of DNA damage induced by UV irradiation or treatment with MMS, whereas cells containing only E.coli ligase are defective in DNA repair. This suggests that the structural domains unique to yeast Cdc9p are not essential for mitotic growth, but may facilitate DNA repair.  相似文献   

9.
We have previously shown that Phe(120), Glu(216), and Asp(301) in the active site of cytochrome P450 2D6 (CYP2D6) play a key role in substrate recognition by this important drug-metabolizing enzyme (Paine, M. J., McLaughlin, L. A., Flanagan, J. U., Kemp, C. A., Sutcliffe, M. J., Roberts, G. C., and Wolf, C. R. (2003) J. Biol. Chem. 278, 4021-4027 and Flanagan, J. U., Maréchal, J.-D., Ward, R., Kemp, C. A., McLaughlin, L. A., Sutcliffe, M. J., Roberts, G. C., Paine, M. J., and Wolf, C. R. (2004) Biochem. J. 380, 353-360). We have now examined the effect of mutations of these residues on interactions of the enzyme with the prototypical CYP2D6 inhibitor, quinidine. Abolition of the negative charge at either or both residues 216 and 301 decreased quinidine inhibition of bufuralol 1'-hydroxylation and dextromethorphan O-demethylation by at least 100-fold. The apparent dissociation constants (K(d)) for quinidine binding to the wild-type enzyme and the E216D and D301E mutants were 0.25-0.50 microm. The amide substitution of Glu(216) or Asp(301) resulted in 30-64-fold increases in the K(d) for quinidine. The double mutant E216Q/D301Q showed the largest decrease in quinidine affinity, with a K(d) of 65 microm. Alanine substitution of Phe(120), Phe(481),or Phe(483) had only a minor effect on the inhibition of bufuralol 1'-hydroxylation and dextromethorphan O-demethylation and on binding. In contrast to the wild-type enzyme, a number of the mutants studied were found to be able to metabolize quinidine. E216F produced O-demethylated quinidine, and F120A and E216Q/D301Q produced both O-demethylated quinidine and 3-hydroxyquinidine metabolites. Homology modeling and molecular docking were used to predict the modes of quinidine binding to the wild-type and mutant enzymes; these were able to rationalize the experimental observations.  相似文献   

10.
Rai V  Gaur M  Shukla S  Shukla S  Ambudkar SV  Komath SS  Prasad R 《Biochemistry》2006,45(49):14726-14739
The Walker A and B motifs of nucleotide binding domains (NBDs) of Cdr1p though almost identical to all ABC transporters, has unique substitutions. We have shown in the past that Trp326 of Walker B and Cys193 of Walker A motifs of N-terminal NBD of Cdr1p have distinct roles in ATP binding and hydrolysis, respectively. In the present study, we have examined the role of a well conserved Asp327 in the Walker B motif of the N-terminal NBD, which is preceded (Trp326) and followed (Asn328) by atypical amino acid substitutions and compared it with its equivalent well conserved Asp1026 of the C-terminal NBD of Cdr1p. We observed that the removal of the negative charge by D327N, D327A, D1026N, D1026A, and D327N/D1026N substitutions, resulted in Cdr1p mutant variants that were severely impaired in ATPase activity and drug efflux. Importantly, all of the mutant variants showed characteristics similar to those of the wild type with respect to cell surface expression and photoaffinity drug analogue [125I] IAAP and [3H] azidopine labeling. Although the Cdr1p D327N mutant variant showed comparable binding with [alpha-32P] 8-azido ATP, Cdr1p D1026N and Cdr1p D327N/D1026N mutant variants were crippled in nucleotide binding. That the two conserved carboxylate residues Asp327 and Asp1026 are functionally different was further evident from the pH profile of ATPase activity. The Cdr1p D327N mutant variant showed approximately 40% enhancement of its residual ATPase activity at acidic pH, whereas no such pH effect was seen with the Cdr1p D1026N mutant variant. Our experimental data suggest that Asp327 of N-terminal NBD has acquired a new role to act as a catalytic base in ATP hydrolysis, a role normally conserved for Glu present adjacent to the conserved Asp in the Walker B motif of all the non-fungal transporters.  相似文献   

11.
The exposure of molecular signals for simian virus 40 (SV40) cell entry and nuclear entry has been postulated to involve calcium coordination at two sites on the capsid made of Vp1. The role of calcium-binding site 2 in SV40 infection was examined by analyzing four single mutants of site 2, the Glu160Lys, Glu160Arg, Glu157Lys (E157K), and Glu157Arg mutants, and an E157K-E330K combination mutant. The last three mutants were nonviable. All mutants replicated viral DNA normally, and all except the last two produced particles containing all three capsid proteins and viral DNA. The defect of the site 1-site 2 E157K-E330K double mutant implies that at least one of the sites is required for particle assembly in vivo. The nonviable E157K particles, about 10% larger in diameter than the wild type, were able to enter cells but did not lead to T-antigen expression. Cell-internalized E157K DNA effectively coimmunoprecipitated with anti-Vp1 antibody, but little of the DNA did so with anti-Vp3 antibody, and none was detected in anti-importin immunoprecipitate. Yet, a substantial amount of Vp3 was present in anti-Vp1 immune complexes, suggesting that internalized E157K particles are ineffective at exposing Vp3. Our data show that E157K mutant infection is blocked at a stage prior to the interaction of the Vp3 nuclear localization signal with importins, consistent with a role for calcium-binding site 2 in postentry steps leading to the nuclear import of the infecting SV40.  相似文献   

12.
Gbetagamma binds directly to the third intracellular (i3) loop subdomain of the M(3)-muscarinic receptor (MR). In this report, we identified the Gbetagamma binding motif and G-protein-coupled receptor kinase (GRK2) phosphorylation sites in the M(3)-MR i3 loop via a strategy of deletional and site-directed mutagenesis. The Gbetagamma binding domain was localized to Cys(289)-His(330) within the M(3)-MR-Arg(252)-Gln(490) i3 loop, and the binding properties (affinity, influence of ionic strength) of the M(3)-MR-Cys(289)-His(330) i3 loop subdomain were similar to those observed for the entire i3 loop. Site-directed mutagenesis of the M(3)-MR-Cys(289)-His(330) i3 loop subdomain indicated that Phe(312), Phe(314), and a negatively charged region (Glu(324)-Asp(329)) were required for interaction with Gbetagamma. Generation of the full-length M(3)-MR-Arg(252)-Gln(490) i3 peptides containing the F312A mutation were also deficient in Gbetagamma binding and exhibited a reduced capacity for phosphorylation by GRK2. A similar, parallel strategy resulted in identification of major residues ((331)SSS(333) and (348)SASS(351)) phosphorylated by GRK2, which were just downstream of the Gbetagamma binding motif. Full-length M(3)-MR constructs lacking the 42-amino acid Gbetagamma binding domain (Cys(289)-His(330)) or containing the F312A mutation exhibited ligand recognition properties similar to wild type receptor and also effectively mediated agonist-induced increases in intracellular calcium following receptor expression in Chinese hamster ovary and/or COS 7 cells. However, the M(3)-MRDeltaCys(289)-His(330) and M(3)-MR(F312A) constructs were deficient in agonist-induced sequestration, indicating a key role for the Gbetagamma-M(3)-MR i3 loop interaction in receptor regulation and signal processing.  相似文献   

13.
M Zhao  K C Zen  W L Hubbell  H R Kaback 《Biochemistry》1999,38(23):7407-7412
Evidence has been presented [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] that Glu126 (helix IV) and Arg144 (helix V) which are critical for substrate binding in the lactose permease of Escherichia coli are charge paired and therefore in close proximity. To test this conclusion more directly, three different site-directed spectroscopic techniques were applied to permease mutants in which Glu126 and/or Arg144 were replaced with either His or Cys residues. (1) Glu126-->His/Arg144-->His permease containing a biotin acceptor domain was purified by monomeric avidin affinity chromatography, and Mn(II) binding was assessed by electron paramagnetic resonance spectroscopy. The mutant protein binds Mn(II) with a KD of about 40 microM at pH 7.5, while no binding is observed at pH 5.5. In addition, no binding is detected with Glu126-->His or Arg144-->His permease. (2) Permease with Glu126-->Cys/Arg144-->Cys and a biotin acceptor domain was purified, labeled with a thiol-specific nitroxide spin-label, and shown to exhibit spin-spin interactions in the frozen state after reconstitution into proteoliposomes. (3) Glu126-->Cys/Arg144-->Cys permease with a biotin acceptor domain was purified and labeled with a thiol-specific pyrene derivative, and fluorescence spectra were obtained after reconstitution into lipid bilayers. An excimer band is observed with the reconstituted E126C/R144C mutant, but not with either single-Cys mutant or when the single-Cys mutants are mixed prior to reconstitution. The results provide strong support for the conclusion that Glu126 (helix IV) and Arg144 (helix V) are in close physical proximity.  相似文献   

14.
The Saccharomyces cerevisiae Cdc42p GTPase interacts with multiple regulators and downstream effectors through an approximately 25-amino-acid effector domain. Four effector domain mutations, Y32K, F37A, D38E, and Y40C, were introduced into Cdc42p and characterized for their effects on these interactions. Each mutant protein showed differential interactions with a number of downstream effectors and regulators and various levels of functionality. Specifically, Cdc42(D38E)p showed reduced interactions with the Cla4p p21-activated protein kinase and the Bem3p GTPase-activating protein and cdc42(D38E) was the only mutant allele able to complement the Deltacdc42 null mutant. However, the mutant protein was only partially functional, as indicated by a temperature-dependent multibudded phenotype seen in conjunction with defects in both septin ring localization and activation of the Swe1p-dependent morphogenetic checkpoint. Further analysis of this mutant suggested that the multiple buds emerged consecutively with a premature termination of bud enlargement preceding the appearance of the next bud. Cortical actin, the septin ring, Cla4p-green fluorescent protein (GFP), and GFP-Cdc24p all predominantly localized to one bud at a time per multibudded cell. These data suggest that Cdc42(D38E)p triggers a morphogenetic defect post-bud emergence, leading to cessation of bud growth and reorganization of the budding machinery to another random budding site, indicating that Cdc42p is involved in prevention of the initiation of supernumerary buds during the cell cycle.  相似文献   

15.
16.
17.
Agnihotri G  He S  Hong L  Dakoji S  Withers SG  Liu HW 《Biochemistry》2002,41(6):1843-1852
The compound (methylenecyclopropyl)formyl-CoA (MCPF-CoA) has been reported earlier as a potent active site-directed inactivator of bovine liver enoyl-CoA hydratase (ECH). It is believed that the mechanism of inactivation involves the attack of Cys114 at C-2' of MCPF-CoA, resulting in ring cleavage and permanent covalent modification of the enzyme. Here, we describe studies with the C114A mutant of bovine liver ECH, which was constructed and purified to determine the role of this residue in the catalytic mechanism of the enzyme. The C114A mutant, which is catalytically competent, shows an unexpected susceptibility to inactivation by MCPF-CoA, indicating that Cys114 is not the primary nucleophile responsible for the inactivation of the enzyme. To determine if catalytic residues Glu115 and Glu135 play a role in the inactivation of the enzyme, the E115Q and E135Q mutants were also constructed and purified. It was determined that these mutants did not react with MCPF-CoA, indicating a possible role for both residues in the inactivation of the wild-type enzyme. Pepsin digestion and subsequent LC-MS/MS analysis of the inactivated wild-type enzyme and C114A mutant revealed that Glu115 was modified in each case, supporting the hypothesis that this residue is the true nucleophile that traps MCPF-CoA and indicating that the covalent modification of Cys114 reported earlier may be a postinactivation artifact. We propose a modified mechanism of inactivation involving Glu115 and Glu135, and suggest that MCPF-CoA may be a mechanism-based inhibitor for bovine liver ECH.  相似文献   

18.
The importance of the WMN(D/E)PN motif, which is well conserved among -fructofuranosidases grouped in the glycosylhydrolase family 32, in Aspergillus ficuum endoinulinase was accessed. Each mutant enzyme generated by site-directed mutagenesis of Trp17 in the conserved motif to Gln, Leu, Ser, Pro, Thr, or Met had an activity of less than 1% of the wild type. Another mutant enzyme obtained by mutation of Glu20 in the motif to Ser, Leu, Thr, Gln, Ala, or Val had an enzyme activity of less than 1% of the wild type. Furthermore, the E20D mutant enzyme, in which Glu20 in the conserved motif was replaced with Asp, had 1.1% of the wild type activity. These results clearly indicated that Trp17 and Glu20 are essential for the enzyme activity.  相似文献   

19.
We examined the effect of a novel disulfide bond engineered in subtilisin E from Bacillus subtilis based on the structure of a thermophilic subtilisin-type serine protease aqualysin I. Four sites (Ser163/Ser194, Lys170/Ser194, Lys170/Glu195, and Pro172/Glu195) in subtilisin E were chosen as candidates for Cys substitutions by site-directed mutagenesis. The Cys170/Cys195 mutant subtilisin formed a disulfide bond in B. subtilis, and showed a 5-10-fold increase in specific activity for an authentic peptide substrate for subtilisin, N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide, compared with the single-Cys mutants. However, the disulfide mutant had a 50% decrease in catalytic efficiency due to a smaller k(cat) and was thermolabile relative to the wild-type enzyme, whereas it was greatly stabilized relative to its reduced form. These results suggest that an electrostatic interaction between Lys170 and Glu195 is important for catalysis and stability in subtilisin E. Interestingly, the disulfide mutant was found to be more stable in polar organic solvents, such as dimethylformamide and ethanol, than the wild-type enzyme, even under reducing conditions; this is probably due to the substitution of uncharged Cys by charged surface residues (Lys170 and Glu195). Further, the amino-terminal engineered disulfide bond (Gly61Cys/Ser98Cys) and the mutation Ile31Leu were introduced to enhance the stability and catalytic activity. A prominent 3-4-fold increase in the catalytic efficiency occurred in the quintet mutant enzyme over the range of dimethylformamide concentration (up to 40%).  相似文献   

20.
Isopentenyl diphosphate:dimethylallyl diphosphate (IPP:DMAPP) isomerase is a key enzyme in the biosynthesis of isoprenoids. The mechanism of the isomerization reaction involves protonation of the unactivated carbon-carbon double bond in the substrate. Analysis of the 1.97 A crystal structure of the inactive C67A mutant of E. coli isopentenyl diphosphate:dimethylallyl diphosphate isomerase complexed with the mechanism-based inactivator 3,4-epoxy-3-methyl-1-butyl diphosphate is in agreement with an isomerization mechanism involving Glu 116, Tyr 104, and Cys 67. In particular, the results are consistent with a mechanism where Glu116 is involved in the protonation step and Cys67 in the elimination step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号