首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
We investigated the gene regulatory mechanism of a previously engineered riboswitch +thiMN15#19 that turns on gene expression in response to thiamine pyrophosphate (TPP). In vitro enzymatic probing was performed to identify the secondary structures of the OFF conformations predicted by Mfold. Interestingly, enzymatic probing data of the riboswitch and its variants indicated that the riboswitch in its OFF state adopts two distinct structures. Moreover, further in vivo experiments suggested that both OFF structures contribute to the riboswitch function. A deeper understanding of how riboswitches function at the molecular level should enhance our ability to design synthetic riboswitches with new or improved characteristics.  相似文献   

3.
We investigated the gene regulatory mechanism of a previously engineered riboswitch +thiMN(15)#19 that turns on gene expression in response to thiamine pyrophosphate (TPP). In vitro enzymatic probing was performed to identify the secondary structures of the OFF conformations predicted by Mfold. Interestingly, enzymatic probing data of the riboswitch and its variants indicated that the riboswitch in its OFF state adopts two distinct structures. Moreover, further in vivo experiments suggested that both OFF structures contribute to the riboswitch function. A deeper understanding of how riboswitches function at the molecular level should enhance our ability to design synthetic riboswitches with new or improved characteristics.  相似文献   

4.
Riboswitches are RNA elements in mRNA that control gene expression in cis in response to their specific ligands. Because artificial riboswitches make it possible to regulate any gene with an arbitrary molecule, they are expected to function as biosensors, in which the output is easily detectable protein expression. I report herein a fully rational design strategy for artificially constructing novel riboswitches that work in a eukaryotic cell-free translation system (wheat germ extract). In these riboswitches, translation mediated by an internal ribosome entry site (IRES) is promoted only in the presence of a specific ligand (ON), while it is inhibited in the absence of the ligand (OFF). The first rationally designed riboswitch, which is regulated by theophylline, showed a high switching efficiency and dependency on theophylline. In addition, based on the design of the theophylline-dependent riboswitch, other three kinds of riboswitches controlled by FMN, tetracycline, and sulforhodamine B, were constructed only by calculating the ΔG value of one stem-loop structure. The rational design strategy described herein is therefore useful for easily producing various ligand-dependent riboswitches, which are available as biosensors for detecting their ligands.  相似文献   

5.
A scheme is presented whereby a new genetic control circuit can be introduced into an organism, permitting the experimenter to turn the expression of a given gene (or set of genes) on or off at will. The proposed scheme involves a positive feedback loop--here, a positive regulator, the CII protein of phage lambda, with its structural gene engineered so as to require CII for its expression. This feedback loop creates the possibility of two stable steady states, with gene cII ON or OFF. Genes added downstream of cII and lacking a promoter will follow the same expression as cII. Two additional circuits allow the experimenter to switch at will between the ON and OFF states.  相似文献   

6.
Translational riboswitches are bacterial gene regulatory elements found in the 5′-untranslated region of mRNAs. They operate through a conformational refolding reaction that is triggered by a concentration change of a modulating small molecular ligand. The translation initiation region (TIR) is either released from or incorporated into base pairing interactions through the conformational switch. Hence, initiation of translation is regulated by the accessibility of the Shine-Dalgarno sequence and start codon. Interaction with the 30S ribosome is indispensable for the structural switch between functional OFF and ON states. However, on a molecular level it is still not fully resolved how the ribosome is accommodated near or at the translation initiation region in the context of translational riboswitches. The standby model of translation initiation postulates a binding site where the mRNA enters the ribosome and where it resides until the initiation site becomes unstructured and accessible. We here investigated the adenine-sensing riboswitch from Vibrio vulnificus. By application of a 19F labelling strategy for NMR spectroscopy that utilizes ligation techniques to synthesize differentially 19F labelled riboswitch molecules we show that nucleotides directly downstream of the riboswitch domain are first involved in productive interaction with the 30S ribosomal subunit. Upon the concerted action of ligand and the ribosomal protein rS1 the TIR becomes available and subsequently the 30S ribosome can slide towards the TIR. It will be interesting to see whether this is a general feature in translational riboswitches or if riboswitches exist where this region is structured and represent yet another layer of regulation.  相似文献   

7.
8.
枯草芽胞杆菌Bacillussubtilis在工业生物技术以及合成生物学领域作为一种重要的微生物可广泛用作代谢工程、重组蛋白表达以及新型基因电路的底盘。在B. subtilis中构建基于非编码RNA的高精准调节元件,能够实现不依赖蛋白质因子的基因表达调控,丰富B.subtilis基因表达通用工具。通过基因工程手段,设计了基于茶碱适体域的核糖开关E和适体核酶AZ调节元件,并与不同的B.subtilis内源组成型启动子适配,构建出茶碱激活型基因表达控制元件。测定这两种调节元件与6种组成型启动子组合匹配下报告基因GFP的荧光强度,鉴定并分析各调控元件的工作性能。并进一步以红色荧光蛋白mCherry和普鲁兰酶两种不同的异源蛋白验证核糖开关或适体核酶与启动子的最优组合。结果表明,同一种RNA调节元件与不同启动子组合呈现不同水平的调控效率。在核糖开关与启动子的组合中,启动子PsigW和核糖开关E组合(sigWE)对GFP表达的诱导率最高,达到16.8。在适体核酶与启动子的组合中,AZ与启动子P43、PrpoB组合(P43AZ和rpoBAZ)的诱导率最高,分别达到了6.1和6.2。进一步验证结果显示,sigWE调控mCherry的诱导率最高(9.2),而P43E调控普鲁兰酶的诱导率最高(32.8),产酶水平达到了81U/mL。核糖开关和适体核酶对GFP、mCherry、普鲁兰酶均能实现调控,但是不同元件组合的调控性能有所差异,对不同基因的调控效果也不尽相同。  相似文献   

9.
10.
Sodium current and intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). Sodium current activation followed a single-exponential time course, provided a delay was interposed between the onset of the step ON depolarization and that of the current change. The delay decreased with increased ON depolarization and, for a constant ON depolarization, increased with prehyperpolarization. ON charge movement followed a single-exponential time course with time constants tau Q,ON slightly larger than tau Na, ON. For pulses between -70 and -50 mV, tau Q,ON/tau Na,ON = 1.14 +/- 0.08. The OFF charge movement and OFF sodium current tails after a depolarizing pulse followed single-exponential time courses, with tau Q, OFF larger than tau Na, OFF. tau Q,OFF/tau Na,OFF increased with OFF voltage from 1 near -100 mV to 2 near -160 mV. At a set OFF potential (-120 mV), both tau Q,OFF and tau Na,OFF increased with ON pulse duration. The delay in INa activation and the effect of ON pulse duration on tau Q,OFF and tau Na,OFF are inconsistent with a simple two-state, single-transition model for the gating of batrachotoxin-modified sodium channels.  相似文献   

11.
Kerschensteiner D  Wong RO 《Neuron》2008,58(6):851-858
Patterns of coordinated spontaneous activity have been proposed to guide circuit refinement in many parts of the developing nervous system. It is unclear, however, how such patterns, which are thought to indiscriminately synchronize nearby cells, could provide the cues necessary to segregate functionally distinct circuits within overlapping cell populations. Here, we report that glutamatergic retinal waves possess a substructure in the bursting of neighboring retinal ganglion cells with opposite light responses (ON or OFF). Within a wave, cells fire repetitive nonoverlapping bursts in a fixed order: ON before OFF. This pattern is absent from cholinergic waves, which precede glutamate-dependent activity, providing a developmental sequence of distinct activity-encoded cues. Asynchronous bursting of ON and OFF retinal ganglion cells depends on inhibition between these parallel pathways. Similar asynchronous activity patterns could arise throughout the nervous system, as inhibition matures and might help to separate connections of functionally distinct subnetworks.  相似文献   

12.
The extent of a neuron's dendritic field defines the region within which information is processed. The dendritic fields of functionally distinct ON and OFF center retinal ganglion cells (RGCs) form separate mosaics across the retina. Within each mosaic, neighboring dendritic fields overlap by a constant amount, sampling the visual field with the appropriate coverage. Contact-mediated lateral inhibition between neighboring RGCs has long been thought to regulate both the extent and overlap of dendritic fields during development. Here we show that dendro-dendritic contact exists between developing RGCs and occurs in a manner that would regulate the formation of ON and OFF mosaics separately. Dye-filled neighboring ON and OFF ferret alpha RGCs were reconstructed using multiphoton microscopy. At all neonatal ages examined, we observed dendro-dendritic contacts between RGCs of the same sign (ON/ON; OFF/OFF), but never between cells of opposite signs (ON/OFF). Terminal dendrites of one cell often touched a dendrite of its neighbor as they intersected. In some instances, the distal dendrite of one cell formed a fascicle with the proximal process of its neighbor. Alpha cells did not form contacts with neighboring beta cells of the same sign. Together, these observations suggest that dendro-dendritic contact between RGCs is cell-type specific. Dendritic contacts were observed even before the alpha cell arbors were completely stratified, suggesting that cell-cell recognition may take place early in their development. For each cell type, the relative overlap of dendritic fields was constant with age, despite a two-fold increase in field area. We suggest that dendro-dendritic contacts may be sites of intercellular signaling that could regulate local extension of dendrites to maintain the relative overlap of RGCs within a mosaic during development.  相似文献   

13.
14.
15.
Early in C. elegans development, signaling between bilaterally symmetric AWC olfactory neurons causes them to express different odorant receptor genes. AWC left-right asymmetry is stochastic: in each animal, either the left or the right neuron randomly becomes AWC(ON), and the other neuron becomes AWC(OFF). Here we show that the nsy-4 gene coordinates the lateral signaling that diversifies AWC(ON) and AWC(OFF) neurons. nsy-4 mutants generate 2 AWC(OFF) neurons, as expected if communication between the AWC neurons is lost, whereas overexpression of nsy-4 results in 2 AWC(ON) neurons. nsy-4 encodes a transmembrane protein related to the gamma subunits of voltage-activated calcium channels and the claudin superfamily; it interacts genetically with calcium channels and antagonizes a calcium-to-MAP kinase cascade in the neuron that becomes AWC(ON). Genetic mosaic analysis indicates that nsy-4 functions both cell-autonomously and nonautonomously in signaling between AWC neurons, providing evidence for lateral signaling and feedback that coordinate asymmetric receptor choice.  相似文献   

16.
17.
Oscillatory activity of retinal ganglion cell (RGC) has been observed in various species. It was reported such oscillatory activity is raised within large neural network and involved in retinal information coding. In the present research, we found an oscillation-like activity in ON–OFF RGC of bullfrog retina, and studied the mechanisms underlying the ON and OFF activities respectively. Pharmacological experiments revealed that the oscillation-like activity patterns in both ON and OFF pathways were abolished by GABA receptor antagonists, indicating GABAergic inhibition is essential for generating them. At the meantime, such activities in the ON and OFF pathways showed different responses to several other applied drugs. The oscillation-like pattern in the OFF pathway was abolished by glycine receptor antagonist or gap junction blocker, whereas that in the ON pathway was not affected. Furthermore, the blockade of the ON pathway by metabotropic glutamate receptor agonist led to suppression of the oscillation-like pattern in the OFF pathway. These results suggest that the ON pathway has modulatory effect on the oscillation-like activity in the OFF pathway. Therefore, the mechanisms underlying the oscillation-like activities in the ON and OFF pathways are different: the oscillation-like activity in the ON pathway is likely caused by GABAergic amacrine cell network, while that in the OFF pathway needs the contributions of GABAergic and glycinergic amacrine cell network, as well as gap junction connections.  相似文献   

18.
A neural field model of ON and OFF cells with all-to-all inhibitory feedback is investigated. External spatiotemporal stimuli drive the ON and OFF cells with, respectively, direct and inverted polarity. The dynamic differences between networks built of ON and OFF cells (“ON/OFF”) and those having only ON cells (“ON/ON”) are described for the general case where ON and OFF cells can have different spontaneous firing rates; this asymmetric case is generic. Neural responses to nonhomogeneous static and time-periodic inputs are analyzed in regimes close to and away from self-oscillation. Static stimuli can cause oscillatory behavior for certain asymmetry levels. Time-periodic stimuli expose dynamical differences between ON/OFF and ON/ON nets. Outside the stimulated region, we show that ON/OFF nets exhibit frequency doubling, while ON/ON nets cannot. On the other hand, ON/ON networks show antiphase responses between stimulated and unstimulated regions, an effect that does not rely on specific receptive field circuitry. An analysis of the resonance properties of both net types reveals that ON/OFF nets exhibit larger response amplitude. Numerical simulations of the neural field models agree with theoretical predictions for localized static and time-periodic forcing. This is also the case for simulations of a network of noisy integrate-and-fire neurons. We finally discuss the application of the model to the electrosensory system and to frequency-doubling effects in retina.  相似文献   

19.
Mycoplasma bovis, an important pathogen of cattle, was recently shown to possess a family of phase- and size-variable membrane surface lipoprotein antigens (Vsps). These proteins spontaneously undergo noncoordinate phase variation between ON and OFF expression states, generating surface antigenic variation. In the present study, we show that the spontaneously high rate of Vsp phenotypic switching involves DNA rearrangements that occur at high frequency in the M. bovis chromosome. A 1.5-kb HindIII genomic fragment carrying the vspA gene from M. bovis PG45 was cloned and sequenced. The deduced VspA amino acid sequence revealed that 80% of the VspA molecule is composed of reiterated intragenic coding sequences, creating a periodic polypeptide structure. Four distinct internal regions of repetitive sequences in the form of in-tandem blocks extending from the N-terminal to the C-terminal portion of the Vsp product were identified. Southern blot analysis of phenotypically switched isogenic lineages representing ON or OFF phase states of Vsp products suggested that changes in the Vsp expression profile were associated with detectable changes at the DNA level. By using a synthetic oligonucleotide representing a sequence complementary to the repetitive vspA gene region as a probe, we could identify the vspA-bearing restriction fragment undergoing high-frequency reversible rearrangements during oscillating phase transition of vspA. The 1.5-kb HindIII fragment carrying the vspA gene (on state) rearranged and produced a 2.3-kb HindIII fragment (OFF state) and vice versa. Two newly discovered vsp genes (vspE and vspF) were localized on two HindIII fragments flanking the vsp gene upstream and downstream. Southern blot hybridization with vspE- and vspF-specific oligonucleotides as probes against genomic DNA of VspA phase variants showed that the organization and size of the fragments adjacent to the vspA gene remained unchanged during VspA ON-OFF switching. The mechanisms regulating the vsp genes are yet unknown; our findings suggest that a recombinative mechanism possibly involving DNA inversions, DNA insertion, or mobile genetic elements may play a role in generating the observed high-frequency DNA rearrangements.  相似文献   

20.
Engineered “aptazymes” fuse in vitro selected aptamers with ribozymes to create allosteric enzymes as biosensing components and artificial gene regulatory switches through ligand-induced conformational rearrangement and activation. By contrast, activating ligand is employed as an enzymatic cofactor in the only known natural aptazyme, the glmS ribozyme, which is devoid of any detectable conformational rearrangements. To better understand this difference in biosensing strategy, we monitored by single molecule fluorescence resonance energy transfer (FRET) and 2-aminopurine (AP) fluorescence the global conformational dynamics and local base (un)stacking, respectively, of a prototypical drug-sensing aptazyme, built from a theophylline aptamer and the hammerhead ribozyme. Single molecule FRET reveals that a catalytically active state with distal Stems I and III of the hammerhead ribozyme is accessed both in the theophylline-bound and, if less frequently, in the ligand-free state. The resultant residual activity (leakage) in the absence of theophylline contributes to a limited dynamic range of the aptazyme. In addition, site-specific AP labeling shows that rapid local theophylline binding to the aptamer domain leads to only slow allosteric signal transduction into the ribozyme core. Our findings allow us to rationalize the suboptimal biosensing performance of the engineered compared to the natural aptazyme and to suggest improvement strategies. Our single molecule FRET approach also monitors in real time the previously elusive equilibrium docking dynamics of the hammerhead ribozyme between several inactive conformations and the active, long-lived, Y-shaped conformer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号