首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
By means of a sensitive electrophoretic technique for the detection of proteinase inhibitors three slowly migrating proteinase inhibitors (SMPI) were discovered in some samples of pathological urine. SMPI 1 migrated in the beta 2-zone whereas SMPI 2 and SMPI 3 appeared in the anodal and cathodal gamma-zone, respectively. Only SMPI 1 and 2 were examined in detail. These were found to inhibit tryptic and elastolytic digestion, but not chymotryptic or plasminolytic digestion of casein. Immunological investigations revealed no similarity to normally occurring proteinase inhibitors in serum and urine. The SMPIs from one sample of urine were partially purified by DEAE-Sephadex ion exchange chromatography, followed by gel filtration on Sephacryl superfine 200. This procedure did not separate the two inhibitors. The molecular masses were estimated to be 25 000 Da by gel filtration, and 23000-26500 Da by SDS polyacrylamide gel electrophoresis.  相似文献   

2.
The cigarette beetle, Lasioderma serricorne (Fabricius), is a common pest of stored foods. A study of digestive proteinases in L. serricorne was performed to identify potential targets for proteinaceous biopesticides, such as proteinase inhibitors. Optimal casein hydrolysis by luminal proteinases of L. serricorne was in pH 8.5-9.0 buffers, although the pH of luminal contents was slightly acidic. Results from substrate and inhibitor analyses indicated that the primary digestive proteinases were serine proteinases. The most effective inhibitors of caseinolytic hydrolysis were from soybean (both Bowman Birk and Kunitz), with some inhibition by chymostatin, N-tosyl-L-phenylalanine chloromethyl ketone, and leupeptin. Casein zymogram analysis identified at least eight proteolytic activities. Activity blot analyses indicated one major proteinase activity that hydrolysed the trypsin substrate N-alpha-benzoyl-L-arginine rho-nitroanilide, and three major proteinase activities that hydrolysed the chymotrypsin substrate N-succinyl ala-ala-pro-phe rho-nitroanilide. The absence of cysteine, aspartic, and metallo proteinases in L. serricorne digestion was evidenced by the lack of activation by thiol reagents, alkaline pH optima, and the results from class-specific proteinase inhibitors. The data suggest that protein digestion in L. serricorne is primarily dependent on trypsin- and chymotrypsin-like proteinases.  相似文献   

3.
The development of proteinase inhibitors as potential insect control agents has been constrained by insect adaptation to these compounds. The velvet bean caterpillar (Anticarsia gemmatalis) is a key soybean pest species that is well-adapted to proteinase inhibitors, particularly serine-proteinase inhibitors, which are abundant in the caterpillar host. The expression of diverse proteolytic enzymes by gut symbionts may allow the velvet bean caterpillar to circumvent proteinase inhibitors produced by the host plant. In this study, we characterized the proteolytic activity of the four nonpathogenic species of gut bacteria isolated from the velvet bean caterpillar—Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii and Staphylococcus xylosus. Two proteinase substrates, N-α-benzoyl-l-Arg-p-nitroanilide (l-BApNA) and N-α-p-tosyl-l-Arg methyl ester (l-TAME) and five proteinase inhibitors [aprotinin, E-64, ethylenediamine tetraacetic acid (EDTA), pepstatin and N-α-tosyl-l-lysine chloromethyl ketone (TLCK)] as well as CaCl2, pH and temperature profiles were used to characterize the expressed proteolytic activity of these bacterial strains in vitro. Kinetic parameters for proteolytic activity were also estimated. The results of these experiments indicated that serine- and cysteine-proteinase activities were expressed by all four gut bacteria symbionts of the velvet bean caterpillar. The cysteine- and serine-proteinase activities of these gut symbionts were distinct and different from that of gut proteinases of the caterpillar itself. This finding provides support for the potential involvement of gut symbionts in the mitigation of the negative effects of serine-proteinase inhibitors in the velvet bean caterpillar.  相似文献   

4.
Kim S  Choi H  Park ZY 《Molecules and cells》2007,23(3):340-348
Although considerable effort has been devoted in the mass spectrometric analysis of phosphorylated peptides, successful identification of multi-phosphorylated peptides in enzymatically digested protein samples still remains challenging. The ionization behavior of multi-phosphorylated peptides appears to be somewhat different from that of mono- or di-phosphorylated peptides. In this study, we demonstrate increased sensitivity of detection of multi-phosphorylated peptides of beta casein without using phosphopeptide enrichment techniques. Proteinase K digestion alone increased the detection limit of beta casein multi-phosphorylated peptides in the LC-MS analysis almost 500 fold, compared to conventional trypsin digestion (~50 pmol). In order to understand this effect, various factors affecting the ionization of phosphopeptides were investigated. Unlike ionizations of phosphopeptides with minor modifications, those of multi-phosphorylated peptides appeared to be subject to effects such as selectively suppressed ionization by more ionizable peptides and decreased ionization efficiency by multi-phosphorylation. The enhanced detection limit of multi- phosphorylated peptides resulting from proteinase K digestion was validated using a complex protein sample, namely a lysate of HEK 293 cells. Compared to trypsin digestion, the numbers of phosphopeptides identified and modification sites per peptide were noticeably increased by proteinase K digestion. Non-specific proteases such as proteinase K and elastase have been used in the past to increase detection of phosphorylation sites but the effectiveness of proteinase K digestion for multi-phosphorylated peptides has not been reported.  相似文献   

5.
Digestion in the larger black flour beetle, Cynaeus angustus (LeConte), was studied to identify new control methods for this pest of stored grains and grain products. The physiological pH of the larval gut, as measured with extracts in water, was approximately 6.1, and the pH for optimal hydrolysis of casein by gut extracts was 6.2 when buffers were reducing. However, under non-reducing conditions, hydrolysis of casein and synthetic serine proteinase substrates was optimal in alkaline buffer. Three major proteinase activities were observed in zymograms using casein or gelatin. Caseinolytic activity of C. angustus gut extracts was inhibited by inhibitors that target aspartic and serine proteinase classes, with minor inhibition by a cysteine proteinase inhibitor. In particular, soybean trypsin and trypsin/chymotrypsin inhibitors were most effective in reducing the in vitro caseinolytic activity of gut extracts. Based on these data, further studies are suggested on the effects of dietary soybean inhibitors of serine proteinases, singly and in combination with aspartic and cysteine proteinase inhibitors, on C. angustus larvae. Results from these studies can be used to develop new control strategies to prevent damage to grains and stored products by C. angustus and similar coleopteran pests.  相似文献   

6.
When the usual assay method of proteinase using milk casein as substrate is applied to the crude extract of wheat bran culture of Aspergillus sojae KS, over 90% of the total activity at pH 7 to 8 is occupied by that of alkaline proteinase. However, lower hydrolytic activity of purified alkaline proteinase than that of crude extract was observed not only in the digestion of soybean meal but also in the digestion of soybean protein, in spite of the fact that each enzyme solution had the same proteolytic activity on milk casein. From the experiments to fractionate crude extract by chromatography on DEAE-Sephadex A-50, neutral proteinase I and II, whose contribution to the hydrolysis of milk casein was estimated to be under 10% of the total activity of crude extract, were suggested to have almost comparable effect to alkaline proteinase in the digestion, determined by the increase of 0.4 m TCA-soluble nitrogen, of soybean protein by crude extract. Based on the rapid increase of 0.4 m TCA-soluble nitrogen and slight increase of Formol-titration value, it seems that both neutral proteinase I and II act as endo-type enzyme similar to alkaline proteinase and are not effective in the liberation of low molecular peptides or amino acids.  相似文献   

7.
The effect of crude proteinase inhibitor extracts from seeds of different crop plants (black gram, chickpea, chickling vetch, finger millet, French bean, green gram, horse gram, lentil, pea and soybean) on the insecticidal activity of B. thuringiensis var. kurstaki HD-1 was investigated against neonate larvae of H. armigera by diet incorporation method. The larval mortality due to crude proteinase inhibitors alone (5% seed weight equivalent) ranged from 4.1 to 19.1%; the maximum mortality with finger millet and the minimum with pea var. DDR-23. A mixture of B. thuringiensis var. kurstaki HD-1 (10 ppm) and proteinase inhibitor (5% seed weight equivalent) was synergistic in larval mortality with respect to proteinase inhibitors of pea var. DMR-16, chickling vetch var. RLK-1098 and B101-212, lentil var. ILL-8095 and L-4076, soybean var. PK-1042, PK-416 and Pusa-22, chickpea var. Pusa-413, French bean (Chitra) and black gram; and antagonistic with respect to those of finger millet, horse gram and kidney bean. The larval growth reduction with crude proteinase inhibitors alone ranged from 17.9 to 53.1%; the maximum growth reduction with soybean var. PK-1042 and minimum with lentil var. L-4076. A mixture of B. thuringiensis var. kurstaki and proteinase inhibitor was synergistic in growth reduction with respect to proteinase inhibitors of lentil var. ILL-8095, and L-4626 and antagonistic with respect to that of finger millet. The midgut proteinase inhibition with crude seed extracts (3.3% seed weight equivalent) ranged from 9.3 to 60.9% and was negatively correlated with larval mortality. These results showed that interactive effect of B. thuringiensis var. kurstaki HD-1 and proteinase inhibitors in the larvae of H. armigera depended upon the quality and quantity of proteinase inhibitors, which vary widely in different plants.  相似文献   

8.
Some physico-chemical properties of lytic proteinase L2 isolated from the enzymatic microbial preparation of lysoamidase were studied. The molecular mass of the enzyme is 15 000 Da, pI is 5.3. The enzyme hydrolyzes casein as well as the cells and cell walls of Staphylococcus aureus 209-P. The pH optimum of casein hydrolysis lies at 9.5; that for cell wall hydrolysis at 8.0. The temperature optimum for casein hydrolysis and cell lysis lies at 55 degrees C and 65 degrees C, respectively. The enzyme proteolytic activity is inhibited by serine proteinase inhibitors in a greater degree than the lytic activity. 50% of the proteolytic and lytic activities is lost upon enzyme heating for 15 min at 65 degrees C.  相似文献   

9.
1. Serum proteinase precursor was found in plasma protein fractions I and III of Cohn. Inhibitors of serum proteinase, leucoproteinase, trypsin, and papain were found in fractions IV-1 and IV-4, and to a lesser extent in fractions V and I. 2. Pancreatic, soy bean, lima bean, and egg white inhibitors inhibited trypsin stoichiometrically. Pancreatic inhibitor had comparable inhibitory activity against serum proteinase; soy bean inhibitor had somewhat less, lima bean inhibitor even less, and egg white inhibitor very little. None of these inhibitors appreciably inhibited leucoproteinase or papain. 3. Serum and fractions IV - 1 and IV - 4 had marked inhibitory activity against trypsin and leucoproteinase, and somewhat less against serum proteinase and papain. The inhibitory activity of the plasma proteins against trypsin and leucoproteinase was due almost entirely to fractions IV - 1 and IV - 4; against serum proteinase and papain fraction V was slightly more important. The "reconstituted plasma proteins" accounted for 8 to 25 per cent of the proteinase-inhibitory activity of whole serum or plasma. 4. The proteinase-inhibitory activity of serum, plasma protein fractions, and soy bean inhibitor was heat labile, while that of pancreatic, lima bean, and egg white inhibitors was relatively heat stable. 5. Reducing and oxidizing agents, in very high concentration, inhibited serum proteinase, as well as trypsin and leucoproteinase. These proteinases were not influenced by mercurial sulfhydryl inhibitors, indicating that free sulfhydryl groups do not play an important part in their activity.  相似文献   

10.
The physiology of the gut lumen of the red flour beetle, T. castaneum, was studied to determine the conditions for optimal protein hydrolysis. Although the pH of gut lumen extracts from T. castaneum was 6.5, maximum hydrolysis of casein by gut proteinases occurred at pH 4.2. The synthetic substrate N-alpha-benzoyl-DL-arginine-rho-nitroanilide was hydrolyzed by T. castaneum gut proteinases in both acidic and alkaline buffers, whereas hydrolysis of N-succinyl-ala-ala-pro-phe rho-nitroanilide occurred in alkaline buffer. Inhibitors of T. castaneum digestive proteinases were examined to identify potential biopesticides for incorporation in transgenic seed. Cysteine proteinase inhibitors from potato, Job's tears, and sea anemone (equistatin) were effective inhibitors of in vitro casein hydrolysis by T. castaneum proteinases. Other inhibitors of T. castaneum proteinases included leupeptin, L-trans-epoxysuccinylleucylamido [4-guanidino] butane (E-64), tosyl-L-lysine chloromethyl ketone, and antipain. Casein hydrolysis was inhibited weakly by chymostatin, N-tosyl-L-phenylalanine chloromethyl ketone, and soybean trypsin inhibitor (Kunitz). The soybean trypsin inhibitor had no significant effect on growth when it was bioassayed alone, but it was effective when used in combination with potato cysteine proteinase inhibitor. In other bioassays with single inhibitors, larval growth was suppressed by the cysteine proteinase inhibitors from potato, Job's tears, or sea anemone. Levels of inhibition were similar to that observed with E-64, although the moles of proteinaceous inhibitor tested were approximately 1000-fold less. These proteinaceous inhibitors are promising candidates for transgenic seed technology to reduce seed damage by T. castaneum.  相似文献   

11.
We describe a nested PCR-restriction fragment length polymorphism (RFLP) method for detecting low densities of Cryptosporidium spp. oocysts in natural mineral waters and drinking waters. Oocysts were recovered from seeded 1-liter volumes of mineral water by filtration through polycarbonate membranes and from drinking waters by filtration, immunomagnetizable separation, and filter entrapment, followed by direct extraction of DNA. The DNA was released from polycarbonate filter-entrapped oocysts by disruption in lysis buffer by using 15 cycles of freeze-thawing (1 min in liquid nitrogen and 1 min at 65°C), followed by proteinase K digestion. Amplicons were readily detected from two to five intact oocysts on ethidium bromide-stained gels. DNA extracted from Cryptosporidium parvum oocysts, C. muris (RN 66), C. baileyi (Belgium strain, LB 19), human-derived C. meleagridis, C. felis (DNA from oocysts isolated from a cat), and C. andersoni was used to demonstrate species identity by PCR-RFLP after simultaneous digestion with the restriction enzymes DraI and VspI. Discrimination between C. andersoni and C. muris isolates was confirmed by a separate, subsequent digestion with DdeI. Of 14 drinking water samples tested, 12 were found to be positive by microscopy, 8 were found to be positive by direct PCR, and 14 were found to be positive by using a nested PCR. The Cryptosporidium species detected in these finished water samples was C. parvum genotype 1. This method consistently and routinely detected >5 oocysts per sample.  相似文献   

12.
Bean is one of the major crops in Iran. Seed rot and damping-off caused by Rhizoctonia solani is the most important disease of bean. In this research, infected roots and seedlings of beans were collected from different fields of Tehran Province. The samples were sterilized with 10% sodium hypochloride (5% stock) and incubated on PDA surface in petri-dishes. The purified fungi kept on filter paper and identified, pathogenicity test of R. solani was carried out on 2 cultivars of bean (red bean cv. Naz and white bean cv. Dehghan) and it determined. For identification of the anastomosis groups, the discs of cultured media with 5 mm. diameter of standard AG placed on one side of microscopic slides covered with water agar (2%) of 1 mm. thick and the isolates of the fungus on another side of slide about 2 cm away from each other. Experiment carried out in 4 replications. The cultures were incubated in 25 +/- 1 degrees C incubator for 24 hours, then the mycelial contact stained with lactophenol, cotton blue and hyphal anastomosis looked for under the light microscope with 10 x 40 and 10 x 100 magnifications. As a result, anastomosis groups: AG4, AG4HGII, AG2-2-2B and AG6 determined, frequency of these groups were 64, 18, 2, 16%, respectively. The group AG6 and subgroups AG4HGII and AG2-2-2B are introduced as new anastomosis groups on bean in Iran.  相似文献   

13.
Eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes can be phosphorylated on its β-subunit by two different protein kinases, protein kinase C and casein kinase 2. Phosphorylation by these kinases is additive, suggesting that they phosphorylate different sites (serine residues) in eIF-2β. Two-dimensional peptide mapping of the phosphopeptides generated from labelled eIF-2β by digestion with trypsin, cyanogen bromide or Staphylococcus aureus V8 proteinase showed that protein kinase C and casein kinase 2 phosphorylated distinct and different sites in this protein. This conclusion was supported by the results of analysis of the phosphopeptides on reverse-phase chromatography. Analysis of the phosphopeptides derived from eIF-2β labelled by both kinases together strongly suggested that the sites labelled by protein kinase C and casein kinase 2 are adjacent in the primary sequence. These data are discussed in the light of the present understanding of the sequence specificity of the kinases. Rat liver eIF-2β was also found to be a substrate for protein kinase C and casein kinase 2, which were again shown to label different serine residues.  相似文献   

14.
The molecular-weight properties of three purified proteinase inhibitors from lima bean were studied by using high speed sedimentation equilibrium. Two isoinhibitors [fraction I and II, nomenclature from Jones et al., (18)]do not self-associate at moderate pH and concentration (<4 g/liter). Fraction IV exists as a monomer at pH 2.0 and polymerizes at higher pH values. The molecular-weight data fit a monomer ? dimer equilibrium at pH 7.0, and a monomer ? dimer ? trimer equilibrium at pH 4.65.  相似文献   

15.
Summary We have identified cytoplasmic and membrane-associated proteinases from Micrococcus lysodeikticus (M. luteus) by the use of 125I-labeled casein and insulin as substrates. The membrane-associated activities were released by shock washing. Proteolytic activities showed pH optima at slightly alkaline values and we have concentrated on the activities at pH 8.0. The total units of both proteolytic activities were higher in the cytoplasmic than in any other fractions but the situation was different when the results were expressed in terms of specific activity. The activities against casein and insulin were differentiated by the action of inhibitors, divalent metal ions, Arrhenius plots and dependence on ionic strength. On these grounds, it is proposed that the membrane-associated enzyme acting on insulin is a single thiol proteinase while the proteolysis of casein reflects the action of, at least, two enzymes (thiol proteinase and serine proteinase). The distinction between the casein and insulin degrading activities was confirmed by crossed-inhibition experiments and by their behaviour on gel chromatography and concentration-dependent experiments.The aggregating properties have hampered the purification of the enzymes. The present results raise doubts about the significance of preventing membrane damage and degradation of membrane proteins by the addition of indiscriminated proteinase inhibitors during membrane isolation and manipulation.  相似文献   

16.
A S-PI(Pepstatin Ac)-insensitive carboxyl proteinase was found in culture filtrate of a Xanthomonas sp. bacterium. The carboxyl proteinase was highly purified and about 100 mg of the enzyme was obtained from 601 of culture filtrate, with a recovery of 25%. The optimum condition for the action of the purified enzyme toward casein was approx. pH 2.7 and its activity was not inhibited by any of such carboxyl proteinase inhibitors as Pepstatin, S-PI, and DAN but EPNP inhibited it. Such behavior of the enzyme against inhibitors resembles that of Pseudomonas sp. carboxyl proteinase, the first found from a bacterium. Some differences were observed, however, in their properties such as optimum pH, isoelectric point, and amino acid composition.  相似文献   

17.
A cysteine endopeptidase (EC 3.4.22.-) present in cotyledons of mung bean (Vigna radiata) seedlings was purified to homogeneity, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This proteinase has an apparent molecular mass of 33 kilodaltons as estimated by SDS-PAGE and belongs to the class of cysteine proteinases as judged by the effects of various proteinase inhibitors on the activity of the enzyme. When proangiotensin is used as a substrate, the enzyme preferentially hydrolyzes the peptide bonds formed by the amino group of Leu or lle in this oligopeptide chain; for the enzyme to cleave those bonds, peptide sequences consisting of at least three amino acid residues on the amino side of Leu or lle must be present. The proteinase readily digests globulin present in mung bean cotyledons to smaller polypeptides.  相似文献   

18.
Food processing leads to a variety of chemical modifications of amino acids in food proteins. Recent studies have shown that some modified amino acids resulting from glycation reactions can pass the intestinal barrier when they are bound in dipeptides. In this study, we investigated as to what extent modified amino acids are released from post-translationally modified casein during simulated gastrointestinal digestion. Casein was enriched with N-ε-fructoselysine, N-ε-carboxymethyllysine, and lysinoalanine, in different degrees of modification. The casein samples were subjected to a two-step proteolysis procedure, simulating gastrointestinal digestion. The digestibility of modified casein as measured by analytical size-exclusion chromatography (SEC) decreased with increasing degree of modification especially after enrichment of fructoselysine and lysinoalanine. Semi-preparative SEC of digested casein samples revealed that fructoselysine and carboxymethyllysine are released bound in peptides smaller than 1,000 Da, which is comparable to native amino acids. The glycation compounds should, therefore, be available for absorption. Lysinoalanine as a crosslinking amino acid, however, is mostly released into longer peptides of at least 30–40 amino acids which should strongly impair its absorption availability.  相似文献   

19.
The stoichiometry of complex formation between two lysosomal proteinases from rabbit liver, cathepsin M and fructose 1,6-bisphosphatase converting enzyme (CE), and their respective endogenous inhibitors was studied by the equilibrium gel penetration method. In each case the molecular weight of the complex was found to be the sum of the molecular weights of the proteinase and its inhibitor, indicating the formation of 1:1 complexes. From the reappearance of proteinase activity on dilution, it is concluded that complex formation is reversible. Localization of the proteinase activities on the outer surface of the lysosomes was confirmed in these experiments by the inhibition of this proteinase activity on addition of inhibitors to intact lysosomes. The digestion by subtilisin of rabbit liver aldolase and rabbit liver fructose 1,6-bisphosphatase, the endogenous substrates for the lysosomal proteinases, was unaffected by the inhibitors.  相似文献   

20.
The major digestive proteinase activities of a new sugar beet pest, Aubeonymus mariaefranciscae Roudier (Coleoptera: Curculionidae), were characterized. Both larvae and adults of A. mariaefranciscae were found to use a complex proteolytic system for protein digestion based on at least trypsin-, chymotrypsin-, elastase-, cathepsin D, leucine aminopeptidase-, carboxypeptidase A- and carboxypeptidase B-like activities. An azocaseinolytic activity at pH 5.0–7.0 was identified, that was not affected by specific inhibitors and activators, making its classification in any of the mechanistic classes established not possible. According to this proteolytic profile, several serine proteinase inhibitors were tested in vitro and in vivo to establish their potential as resistance factors against A. mariaefranciscae. Larvae fed from neonate to pupation on diets containing 0.2% (w/w) soybean Bowman-Birk trypsin-chymotrypsin inhibitor, soybean Kunitz trypsin inhibitor, turkey egg white trypsin inhibitor, or lima bean trypsin inhibitor endure lower survival rates and display significant delays in the developmental time to pupation and to adult emergence. Interestingly, the most significant levels of mortality (about 90%) occurred with larvae fed on diets containing a combination of two or three inhibitors, suggesting a synergistic toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号