首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In altricial mammals, “nesting” refers to a suite of primarily maternal behaviours including nest-site selection, nest building and nest defense, and the many ways that nonhuman animals prepare themselves for parturition are well studied. In contrast, little research has considered pre-parturient preparation behaviours in women from a functional perspective. Reports in the popular press assert that women experience “nesting” urges, in the form of cleaning and organizing behaviours. Anthropological data suggest that having control over the environment is a key feature of childbirth preparation in humans, including decisions about where birth will take place, and who will be welcome in the birthing environment. Here, we describe the results of two studies, a large online study comparing pregnant and non-pregnant women, and a longitudinal study tracking women throughout pregnancy and into the postpartum period and comparing non-pregnant women at similar time intervals, using a nesting questionnaire that we developed. We found that women exhibit nesting behaviours, including space preparation and social selectivity, which peak in the third trimester of pregnancy. As is the case with nonhuman mammals, nesting in women may serve a protective function.  相似文献   

2.
In laboratories mice are typically housed at ambient temperatures (Ta) of 20-24 °C, which are below their average preferred Ta of ≈30 °C. Adjusting laboratory Ta is not a solution because preferences differ depending on activity, time of the day, and gender. We tested the hypothesis that providing mice with nesting material will allow behavioral thermoregulation and reduce aversion to colder Ta. We housed C57BL/6J mice with and without nesting material in a set of 3 connected cages, each maintained at a different Ta (20, 25, or 30 °C). Mice were confined in and given free access to the Ta options to determine if thermotaxis or nest building was the primary mode of behavioral thermoregulation. As predicted, nesting material reduced aversion to 20 °C but the overall preference, in both treatments, was still 30 °C. Inactive and nesting behaviors were more likely to be seen in contact with nesting material while active behaviors were more likely to be observed when not in contact. Nest quality increased with decreasing Ta when mice could not use thermotaxis but nest quality was uncorrelated with Ta when thermotaxis was possible. Males decreased nest quality with increasing temperatures but females showed no correlation. We conclude that nesting material does not alter thermal preferences for 30 °C when thermotaxis is possible, indicating thermotaxis as the primary mode of behavioral thermoregulation. However, when thermotaxis is not possible, mice adjust nest shape depending on the Ta. Nesting material appears to partially compensate for cooler Ta and is especially important when mice are inactive. Therefore, nesting material may be a solution to the mismatch between laboratory Ta and mouse thermal preferences.  相似文献   

3.
Nest site selection is at once fundamental to reproduction and a poorly understood component of many organisms’ reproductive investment. This study investigates the nesting behaviors of black‐and‐white ruffed lemurs, Varecia variegata, a litter‐bearing primate from the southeastern rainforests of Madagascar. Using a combination of behavioral, geospatial, and demographic data, I test the hypotheses that environmental and social cues influence nest site selection and that these decisions ultimately impact maternal reproductive success. Gestating females built multiple large nests throughout their territories. Of these, females used only a fraction of the originally constructed nests, as well as several parking locations as infants aged. Nest construction was best predicted by environmental cues, including the size of the nesting tree and density of feeding trees within a 75 m radius of the nest, whereas nest use depended largely on the size and average distance to feeding trees within that same area. Microhabitat characteristics were unrelated to whether females built or used nests. Although unrelated to nest site selection, social cues, specifically the average distance to conspecifics’ nest and park sites, were related to maternal reproductive success; mothers whose litters were parked in closer proximity to others’ nests experienced higher infant survival than those whose nests were more isolated. This is likely because nesting proximity facilitated communal crèche use by neighboring females. Together, these results suggest a complex pattern of nesting behaviors that involves females strategically building nests in areas with high potential resource abundance, using nests in areas according to their realized productivity, and communally rearing infants within a network of nests distributed throughout the larger communal territory.  相似文献   

4.
Nesting behaviour is critical for reproductive success in oviparous organisms with no parental care. In organisms where sex is determined by incubation temperature, nesting behaviour may be a prime target of selection in response to unbalanced sex ratios. To produce an evolutionary change in response to sex-ratio selection, components of nesting behaviour must be heritable. We estimated the field heritability of two key components of nesting behaviour in a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination by applying the ‘animal model’ to a pedigree reconstructed from genotype data. We obtained estimates of low to non-detectable heritability using repeated records across all environments. We then determined environment-specific heritability by grouping records with similar temperatures for the winter preceding the nesting season, a variable known to be highly associated with our two traits of interest, nest vegetation cover and Julian date of nesting. The heritability estimates of nest vegetation cover and Julian date of nesting were qualitatively highest and significant, or nearly so, after hot winters. Additive genetic variance for these traits was not detectable after cold winters. Our analysis suggests that the potential for evolutionary change of nesting behaviour may be dependent on the thermal conditions of the preceding winter, a season that is predicted to be especially subject to climate change.  相似文献   

5.
A frequent response of organisms to climate change is altering the timing of reproduction, and advancement of reproductive timing has been a common reaction to warming temperatures in temperate regions. We tested whether this pattern applied to two common North American turtle species over the past three decades in Nebraska, USA. The timing of nesting (either first date or average date) of the Common Snapping Turtle (Chelydra serpentina) was negatively correlated with mean December maximum temperatures of the preceding year and mean May minimum and maximum temperatures in the nesting year and positively correlated with precipitation in July of the previous year. Increased temperatures during the late winter and spring likely permit earlier emergence from hibernation, increased metabolic rates and feeding opportunities, and accelerated vitellogenesis, ovulation, and egg shelling, all of which could drive earlier nesting. However, for the Painted Turtle (Chrysemys picta), the timing of nesting was positively correlated with mean minimum temperatures in September, October, December of the previous year, February of the nesting year, and April precipitation. These results suggest warmer fall, and winter temperature may impose an increased metabolic cost to painted turtles that impedes fall vitellogenesis, and April rains may slow the completion of vitellogenesis through decreased basking opportunities. For both species, nest deposition was highly correlated with body size, and larger females nested earlier in the season. Although average annual ambient temperatures have increased over the last four decades of our overall fieldwork at our study site, spring temperatures have not yet increased, and hence, nesting phenology has not advanced at our site for Chelydra. While Chrysemys exhibited a weak trend toward later nesting, this response was likely due to increased recruitment of smaller females into the population due to nest protection and predator control (Procyon lotor) in the early 2000s. Should climate change result in an increase in spring temperatures, nesting phenology would presumably respond accordingly, conditional on body size variation within these populations.  相似文献   

6.
Although observations suggest the potential for phenotypic plasticity to allow adaptive responses to climate change, few experiments have assessed that potential. Modeling suggests that Sceloporus tristichus lizards will need increased nest depth, shade cover, or embryonic thermal tolerance to avoid reproductive failure resulting from climate change. To test for such plasticity, we experimentally examined how maternal temperatures affect nesting behavior and embryonic thermal sensitivity. The temperature regime that females experienced while gravid did not affect nesting behavior, but warmer temperatures at the time of nesting reduced nest depth. Additionally, embryos from heat‐stressed mothers displayed increased sensitivity to high‐temperature exposure. Simulations suggest that critically low temperatures, rather than high temperatures, historically limit development of our study population. Thus, the plasticity needed to buffer this population has not been under selection. Plasticity will likely fail to compensate for ongoing climate change when such change results in novel stressors.  相似文献   

7.
Theoretical models suggest that in changing environments natural selection on two traits, maternal nesting behaviour and pivotal temperatures (those that divide the sexes) is important for maintaining viable offspring sex ratios in species with environmental sex determination (ESD). Empirical evidence, however, is lacking. In this paper, we provide such evidence from a study of clinal variation in four sex-determining traits (maternal nesting behaviour, pivotal temperatures, nesting phenology, and nest depth) in Physignathus lesueurii, a wide-ranging ESD lizard inhabiting eastern Australia. Despite marked differences in air and soil temperatures across our five study sites spanning 19° latitude and 1200 m in elevation, nest temperatures did not differ significantly among sites. Lizards compensated for climatic differences chiefly by selecting more open nest sites with higher incident radiation at cooler sites. Clinal variation in the onset of nesting also compensated for climatic differences, but to a lesser extent. There was no evidence of compensation through pivotal temperatures or nest depth. More broadly, our results extend to the egg stage the life history prediction that behaviour is the chief compensatory mechanism for climatic differences experienced by species spanning environmental extremes. Furthermore, our study was unique in revealing that nest site choice influenced mainly the daily range in nest temperatures, rather than mean temperatures, in a shallow-nesting reptile. Finally, indirect evidence suggests that the cue used by nesting lizards was radiation or temperature (through basking or assessing substrate temperatures), not visual detection of canopy openness. We conclude that maternal nesting behaviour and nesting phenology are traits subject to sex ratio selection in P. lesueurii, and thus, must be considered among the repertoire of ESD species for responding to climate change.  相似文献   

8.
Many studies have dealt with the habitat requirements of cavity‐nesting birds, but there is no meta‐analysis on the subject and individual study results remain vague or contradictory. We conducted a meta‐analysis to increase the available evidence for nest‐site selection of cavity‐nesting birds. Literature was searched in Web of Science and Google Scholar and included studies that provide data on the habitat requirements of cavity‐nesting birds in temperate and boreal forests of varying naturalness. To compare nest and non‐nest‐tree characteristics, the following data were collected from the literature: diameter at breast height (DBH) and its standard deviation (SD), sample size of trees with and without active nest, amount of nest and available trees described as dead or with a broken crown, and amount of nest and available trees that were lacking these characteristics. Further collected data included bird species nesting in the cavities and nest‐building type (nonexcavator/excavator), forest type (coniferous/deciduous/mixed), biome (temperate/boreal), and naturalness (managed/natural). From these data, three effect sizes were calculated that describe potential nest trees in terms of DBH, vital status (dead/alive), and crown status (broken/intact). These tree characteristics can be easily recognized by foresters. The results show that on average large‐diameter trees, dead trees, and trees with broken crowns were selected for nesting. The magnitude of this effect varied depending primarily on bird species and the explanatory variables forest type and naturalness. Biome had lowest influence (indicated by ΔAIC). We conclude that diameter at breast height, vitality, and crown status can be used as tree characteristics for the selection of trees that should be retained in selectively harvested forests.  相似文献   

9.
Exposure of Peromyscus leucopus to low ambient temperature (5°C versus 26°C) during a 5-day test resulted in the building of larger nests. The weight of cotton used by the animal was employed as an index of nest size. Animals which had been acclimated to 5°C for 6 weeks prior to testing built larger nests at 5°C and smaller nests at 26°C than did warm-acclimated mice. In addition, warmacclimated P. leucopus maintained for 6 weeks under short photoperiod (LD9:15; L=light, D=dark) built larger nests at both 5°C and 26°C than did animals maintained under long photoperiod (LD 16:8). This pattern of response to environmental conditions approximating winter (low ambient temperature, short photoperiod) indicates that nesting is a component of the physiological-behavioural complex of cold adaptation.  相似文献   

10.
Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current ‘cold’ nests (mean = 23.2 °C, range 10–33 °C) and future ‘hot’ nests (27.0 °C, 14–37 °C). ‘Hot’ incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot‐incubated hatchlings had higher annual mortality (99%, 97%) than cold‐incubated (11%, 58%) or wild‐born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78– 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52– 1.0) with mean times to extinction of 18–44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest‐site choices. Over the period 1992–2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest‐site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments.  相似文献   

11.
Nest building is a taxonomically widespread and diverse trait that allows animals to alter local environments to create optimal conditions for offspring development. However, there is growing evidence that climate change is adversely affecting nest‐building in animals directly, for example via sea‐level rises that flood nests, reduced availability of building materials, and suboptimal sex allocation in species exhibiting temperature‐dependent sex determination. Climate change is also affecting nesting species indirectly, via range shifts into suboptimal nesting areas, reduced quality of nest‐building environments, and changes in interactions with nest predators and parasites. The ability of animals to adapt to sustained and rapid environmental change is crucial for the long‐term persistence of many species. Many animals are known to be capable of adjusting nesting behaviour adaptively across environmental gradients and in line with seasonal changes, and this existing plasticity potentially facilitates adaptation to anthropogenic climate change. However, whilst alterations in nesting phenology, site selection and design may facilitate short‐term adaptations, the ability of nest‐building animals to adapt over longer timescales is likely to be influenced by the heritable basis of such behaviour. We urgently need to understand how the behaviour and ecology of nest‐building in animals is affected by climate change, and particularly how altered patterns of nesting behaviour affect individual fitness and population persistence. We begin our review by summarising how predictable variation in environmental conditions influences nest‐building animals, before highlighting the ecological threats facing nest‐building animals experiencing anthropogenic climate change and examining the potential for changes in nest location and/or design to provide adaptive short‐ and long‐term responses to changing environmental conditions. We end by identifying areas that we believe warrant the most urgent attention for further research.  相似文献   

12.
Egg predation is a common feature influencing the reproductive success of open nesting birds. Evolutionary pressure therefore favours building cryptic, inconspicuous nests. However, these antipredatory pressures may be in conflict with thermoregulatory constraints, which select for dry nest material maintaining optimum temperature inside a nest cup during the absence of incubating parents. Here we examined possible trade-offs between nest crypsis and thermoregulation in Little Grebes (Tachybaptus ruficollis), which lay their eggs in floating nests built from wet plant material. As this species regularly covers its eggs with nest material, we experimentally examined (1) the rates of egg predation on covered and uncovered artificial nests and (2) possible thermoregulatory costs from nest covering by comparing temperature and relative humidity changes inside the nest cup. Results revealed that covering clutches is beneficial in terms of deterring predators, because uncovered eggs were more vulnerable to predation. Moreover, covering clutches also had thermoregulatory benefits because the mean temperature and relative humidity inside nest cups covered by dry or wet materials were significantly higher for covered compared to uncovered treatments. Covering clutches in Little Grebes therefore does not pose thermoregulatory costs.  相似文献   

13.
Sows are highly motivated to build a maternal nest on the day preceding parturition. A model for nest building has been established in pigs, in which exogenously administered prostaglandin F(2alpha) (PGF(2alpha)) may be used to elicit nesting behaviour in cyclic, pseudopregnant and pregnant pigs. The aim of this experiment was to examine the effects of deprivation of straw bedding on PGF(2alpha)-induced nest building in pseudopregnant Large White gilts. Oestradiol valerate injections (5 mg/day) were given on days 11-15 of the oestrous cycle to induce pseudopregnancy. The pigs were housed individually in a pen (2.8x1.7 m) and provided with 2-kg fresh straw each day. On the test day, on day 46 or 47 of pseudopregnancy, half of the pigs were deprived of straw (substrate effect) and they were injected intramuscularly with saline or 15 mg of PGF(2alpha) (Lutalyse, Upjohn) (treatment effect) allocated in a Latin-square design. Behaviour was recorded onto video tapes for 1 h either side of treatment for analysis using a computerised event recorder. PGF(2alpha)-treated pigs housed in bare or strawed pens showed significantly higher frequencies of pawing and rooting, and stood for longer than saline-treated controls. This treatment effect has been previously shown to be comparable to pre-partum nest building. The removal of straw significantly reduced the frequency of pawing and the duration of rooting by PGF(2alpha)-treated pigs. The results demonstrate that nesting behaviour can be initiated by exogenously administered PGF(2alpha) and is further modified by the provision of straw. This suggests that PGF(2alpha)-induced nesting behaviour is subject to environmental feedback.  相似文献   

14.
Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle (Chrysemys picta) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness.  相似文献   

15.
Replicated bidirectional selection (with control lines) for nest-building behavior in Mus musculus, where nesting scores consisted of the total weight of cotton pulled through the cage lid during four days of testing, yielded an eight-fold difference between high and low lines after 15 generations of selection. The overall realized heritability pooled across lines and replicates was 0.18 ± 0.02 (0.15 ± 0.03 for high nesting scores and 0.23 ± 0.04 for low nesting scores), or 0.28 ± 0.05 when adjusted for within-family selection. Across the 15 generations and the entire experiment, average body weight and number of infertile matings increased, while average litter size decreased, although these changes were not consistent across lines. Inbreeding could account for average decreases in the fertility traits, but there was also a correlated response to selection, since both high lines showed increased litter size and decreased infertile matings.  相似文献   

16.
Incubation temperature is an important aspect in terms of biological performance among crocodiles, and several controlled experiments have demonstrated a significant relationship between incubation temperature, success in hatching and survival of hatchlings. However, a few studies have tested these relationships in the wild. The objective of this study was to determine the relationship of nest characteristics and environment (hatch year, nest basal area and height, clutch size, distance to shore line, and vegetation cover), to incubation temperature and hatching success among Morelet's crocodile (Crocodylus moreletii). The study was carried out during the nesting seasons of Morelet's crocodile, from 2007 to 2009 in the Laguna de Las Ilusiones, an urban lake located in Villahermosa, Tabasco, Mexico. We physically characterized 18 nests and inserted a temperature data logger in each nest chamber. At the end of the nesting season and prior to hatching, we recovered the crocodile eggs and data loggers and calculated hatching success, under laboratory conditions. We related the environmental variables of the nest with the mean and fluctuation (standard deviation) of nest temperature, using linear models. We also related the environmental variables affecting the nest, to mean nest temperature and fluctuation in incubation temperature and to hatching success, using linear models. Although we found differences in incubation temperature between nests, mean incubation temperature did not differ between years, but there were differences in nest thermal fluctuation between years. The mean incubation temperature for 11 nests (61.1%) was lower than the suggested Female–Male pivotal temperature (producing 50% of each sex) for this species, and all hatchlings obtained were males. There were no differences in clutch size between years, but hatching success varied. Our study indicates that hatching success depends on certain environmental variables and nest conditions to which the eggs are subjected, including season, nest size and clutch size. We also discuss the importance of the fluctuation of incubation temperature on hatching success and sex determination.  相似文献   

17.
《Animal behaviour》1988,36(1):1-10
The role of prior experience in nest-site selection by a long-lived corvid, the pinyon jay, Gymnorhinus cyanocephalus, was investigated. The major sources of nest failure were loss to avian predators (Corvus corax and Corvus brachyrhynchos) and abandonment after cold and snowy spring weather. Cold weather favours exposed nesting because solar radiation reduces the energetic costs to nesting females and quickly melts snow in and around the nest. Predation favours cryptic nests. The relative height at which individual jays nested (an index of nest exposure) was compared to their previous nest height and to the fate of that nesting attempt. For the following reasons jays appear to associate nest exposure with the fate of a particular nesting attempt: (1) after nesting in exposed sites, subsequent nests were 27·3% lower (more concealed) in the nest tree following predation, but only 9·7% lower when predation did not occur; (2) concealed nest sites were avoided only after failure due to cold weather; and (3) nest placement following the successful fledging of young did not differ significantly from the previous nest placement. The frequency of nesting in exposed locations dropped from 80% to 55% after individuals suffered their third predatory experience when nesting in exposed locations. Experienced jays nested relatively low throughout the season, which enhances concealment, but nested farther out from the trunk early in the season, which reduces incubation costs. The use of prior experience in nest-site selection is adaptive because sites can include properties associated with past success and exclude those associated with past failure.  相似文献   

18.
The decision of females to nest communally has important consequences for reproductive success. While often associated with reduced energetic expenditure, conspecific aggregations also expose females and offspring to conspecific aggression, exploitation, and infanticide. Intrasexual competition pressures are expected to favor the evolution of conditional strategies, which could be based on simple decision rules (i.e., availability of nesting sites and synchronicity with conspecifics) or on a focal individual's condition or status (i.e., body size). Oviparous reptiles that reproduce seasonally and provide limited to no postnatal care provide ideal systems for disentangling social factors that influence different female reproductive tactics from those present in offspring‐rearing environments. In this study, we investigated whether nesting strategies in a West Indian rock iguana, Cyclura nubila caymanensis, vary conditionally with reproductive timing or body size, and evaluated consequences for nesting success. Nesting surveys were conducted on Little Cayman, Cayman Islands, British West Indies for four consecutive years. Use of high‐density nesting sites was increasingly favored up to seasonal nesting activity peaks, after which nesting was generally restricted to low‐density nesting areas. Although larger females were not more likely than smaller females to nest in high‐density areas, larger females nested earlier and gained access to priority oviposition sites. Smaller females constructed nests later in the season, apparently foregoing investment in extended nest defense. Late‐season nests were also constructed at shallower depths and exhibited shorter incubation periods. While nest depth and incubation length had significant effects on reproductive outcomes, so did local nest densities. Higher densities were associated with significant declines in hatching success, with up to 20% of egg‐filled nests experiencing later intrusion by a conspecific. Despite these risks, nests in high‐density areas were significantly more successful than elsewhere due to the benefits of greater chamber depths and longer incubation times. These results imply that communal nest sites convey honest signals of habitat quality, but that gaining and defending priority oviposition sites requires competitive ability.  相似文献   

19.
Wallace proposed in 1868 that natural rather than sexual selection could explain the striking differences in avian plumage dichromatism. Thus, he predicted that nesting habits, through their association with nest predation, could drive changes in sexual dichromatism by enabling females in cavity nesters to become as conspicuous as males, whereas Darwin (1871, The Descent of Man and Selection in Relation to Sex, John Murray, London) argued that sexual selection was the sole explanation for dichromatism. Sexual dichromatism is currently used as indicating the strength of sexual selection, and therefore testing Wallace's claim with modern phylogentically controlled methodologies is of prime interest for comparing the roles of natural and sexual selection in affecting the evolution of avian coloration. Here, we have related information on nest attendance, sexual dichromatism and nesting habits (open and cavity nesting) to male and female plumage conspicuousness in European passerines. Nest incubation attendance does not explain male or female plumage conspicuousness but nest type does. Moreover, although females of monochromatic and cavity nesting species are more conspicuous than females of other species, males of monochromatic and open nesting species are those with more cryptic plumage. Finally, analyses of character evolution suggest that changes in nesting habits influence the probability of changes in both dichromatism and plumage conspicuousness of males but do not significantly affect those in females. These results strongly suggest a role of nesting habits in the evolution of plumage conspicuousness of males, and a role for sexual selection also in females, both factors affecting the evolution of sexual dichromatism. We discuss our findings in relation to the debate that Darwin and Wallace maintained more than one century ago on the importance of natural and sexual selection in driving the evolution of plumage conspicuousness and sexual dichromatism in birds, and conclude that our results partly support the evolutionary scenarios envisaged by both extraordinary scientists.  相似文献   

20.
Laboratory mice housed under standard vivarium conditions with an ambient temperature (Ta) of ~22 °C are likely to be cold stressed because this Ta is below their thermoneutral zone (TNZ). Mice raised at Tas within the TNZ adapt to the warmer temperatures, developing smaller internal organs and longer tails compared to mice raised at 22 °C. Since mice prefer Tas equal to their TNZ when housed in a thermocline, we hypothesized that mice reared for long periods (e.g., months) in a thermocline would undergo significant changes in organ development and tail length as a result of their thermoregulatory behavior. Groups of three female BALB/c mice at an age of 37 days were housed together in a thermocline consisting of a 90 cm long aluminum runway with a floor temperature ranging from 23 to 39 °C. Two side-by-side thermoclines allowed for a total of 6 mice to be tested simultaneously. Control mice were tested in isothermal runways maintained at a Ta of 22 °C. All groups were given cotton pads for bedding/nest building. Mass of heart, lung, liver, kidney, brain, and tail length were assessed after 73 days of treatment. Mice in the thermocline and control (isothermal) runways were compared to cage control mice housed 3/cage with bedding under standard vivarium conditions. Mice in the thermocline generally remained in the warm end throughout the daytime with little evidence of nest building, suggesting a state of thermal comfort. Mice in the isothermal runway built elaborate nests and huddled together in the daytime. Mice housed in the thermocline had significantly smaller livers and kidneys and an increase in tail length compared to mice in the isothermal runway as well as when compared to the cage controls. These patterns of organ growth and tail length of mice in the thermocline are akin to warm adaptation. Thus, thermoregulatory behavior altered organ development, a process we term behaviorally mediated, warm adaptation. Moreover, the data suggest that the standard vivarium conditions are likely a cold stress that alters normal organ development relative to mice allowed to select their thermal preferendum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号