首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equilibrium dialysis is often used to study the binding of steroids to proteins. With this technique it is customary to determine the percent bound and unbound steroid in the sample, the affinity constant for the steroid-protein binding reaction, and the concentration of binding sites on the protein. Investigators have used many different ratios of dialysis buffer to sample volumes in their experiments assuming that the equilibrium in the post-dialysis sample was the same as existed before dialysis. Chemical equilibrium expressions for the system before and after dialysis indicate that during dialysis the concentration of steroid in the sample decreases resulting in a new equilibrium in which the percent bound and unbound are different from the original sample. The magnitude of the difference between the pre- and post-dialysis systems is proportional to the ratio of dialysis buffer to sample volumes. Accurate values for the affinity constant and binding site can be obtained only if this change in the equilibrium is considered.Experimental verification of the application of these principles was made in an equilibrium dialysis study of testosterone-albumin binding.  相似文献   

2.
This study investigates how calcium modulates the properties of dual positional specific maize lipoxygenase-1, including its interaction with substrate, association with subcellular membrane and alteration of product distribution. Bioinformatic analyses identified Asp38, Glu127 and Glu201 as putative calcium binding residues and Leu37 as a flanking hydrophobic residue also potentially involved in calcium-mediated binding of the enzyme to subcellular membranes. Asp38 and Leu37 were shown to be important but not essential for calcium-mediated association of maize lipoxygenase-1 to subcellular membranes in vitro. Kinetic studies demonstrate that catalytic efficiency (Vmax/Km) shows a bell-shaped dependence on log of the molar ratio of substrate to unbound calcium. Calcium also modulates product distribution of the maize lipoxygenase-1 reaction, favoring 13-positional specificity and increasing the relative amount of (E,Z)-isomeric products. The results suggest that calcium regulates the maize lipoxygenase-1 reaction by binding to substrate, and by promoting binding of substrate to enzyme and association of maize lipoxygenase-1 to subcellular membranes.  相似文献   

3.
Calciphorin, the putative mitochondrial calcium ionophore from rat liver mitochondria, exhibits the inherent properties of the mitochondrial calcium transport system and is similar to the calf heart preparation reported earlier. The protein has a strong selectivity for Ca2+, and has a Kd for Ca2+ of 56.5 ± 6.6 μM and 13.9 ± 2.1 μM in organic extraction and flow dialysis experiments, respectively. Reduction of the contaminating lipids from 23 ± 6.5 to 1.73 ± 0. moles per mole protein does not alter the affinities, Ca2+/protein soichiometry or selectivity for Ca2+.  相似文献   

4.
A radioreceptor assay using [3H]nitrendipine and rat cerebral cortical membranes, in conjunction with equilibrium dialysis, measures the unbound (free) level of nitrendipine in human sera. The sensitivity of the assay is 0.1–0.2 picomoles/ml and is linear from 4 × 10?11 to 4 × 10?9 M nitrendipine. Other dihydropyridine calcium channel antagonists may be measured using this assay if these compounds are used to generate the standard curve. Blank serum interferes with specific [3H]nitrendipine binding (24 percent inhibition per 20 μ1 serum) whereas serum dialysates do not. Total serum nitrendipine levels may be measured, but the sensitivity of the assay is decreased due to interference by serum. Nitrendipine is highly protein bound in serum (93 – 99 percent). This protein binding is essentially unchanged over a serum concentration from 1 to 100 ng/ml. This assay is suitable for pharmacokinetic and pharmacodynamic studies.  相似文献   

5.
Intracellular free calcium concentration in the sea urchin egg was calculated to increase from 0.1 mM in an unfertilized egg to 1 mM in a fertilized egg 10 min after fertilization, based on measurement of the dissociation constant between free calcium and sea urchin egg homogenate. The dissociation constant between free calcium (dialyzable calcium) and homogenate of sea urchin eggs was measured by means of dialysis equilibrium. The dissociation constant of the unfertilized egg was about 10–4 M and that of the fertilized egg was about 10–3 M in three species of sea urchin, Hemicentrotus pulcherrimus, Anthocidaris crassispina, and Pseudocentrotus depressus. An increase in the dissociation constant of the unfertilized egg homogenate was observed after the addition of calcium ion at a concentration above 0.3 mM, the dissociation constant becoming the same as that observed in the fertilized egg homogenate after the administration of CaCl2 at a concentration above 1 mM. Sodium ion also caused a decrease in the calcium-binding ability of the unfertilized egg homogenate. Therefore, penetration of calcium ion or sodium ion upon fertilization might induce an increase in the dissociation constant and then intracellular concentration of free calcium would increase at fertilization. Almost all calcium-binding ability of the egg homogenate was found in the microsomal fraction, and the substance which bound calcium was thought to be protein in nature, since trypsin could decrease the level of calcium-binding substance in the homogenate of the eggs.  相似文献   

6.
Human polymorphonuclear leukocyte neutral proteases (HLNP) released during the process of phagocytosis of aggregated human gamma globulin were tested for their ability to degrade intact rabbit ear cartilage. Using 35S-labeled cartilage as substrate, HLNP derived from 45 × 107 cells released about 45% of the total incorporated 35S. DE-52 chromatography of incubation supernatants revealed a single 35S peak associated with minimal quantities of peptide or protein material as estimated by absorbance at OD230 + 280 nm. Analytical ultracentrifugation gave a molecular weight of 51,800. Incubation of cartilage with excess α-chymotrypsin released 35S-containing protein and peptide elements (Mr 79,400). Therefore, degradation, of the proteoglycans of intact cartilage by HLNP is more extensive than that noted with bovine pancreas α-chymotrypsin. The products of HLNP and α-chymotrypsin digestion of cartilage contained chondroitin sulfates A and/or C since both materials (after column chromatography) were sensitive to chrondroitinase ABC and AC digestion. Collagenolytic activity of HLNP is minimal compared to proteolytic activity as evidenced by the lack of hydroxyproline containing peptides released from cartilage during enzyme incubation. It is suggested that HNLP incubated with intact cartilage may serve as a relevant model in the search for new agents which could combat enzyme-mediated cartilage destruction.  相似文献   

7.
A simplified and defined system was developed to study in vitro calcium phosphate deposition by isolated matrix vesicles from rabbit growth plate cartilage, and to examine the relationship between vesicle phosphatase and calcium deposition. Samples of suspended vesicles containing 25 μg of protein, were incubated for 2 h in a 45Ca-labelled solution with 2.2 mM Ca2+, 1.6 mM PO43? and 1 mM ATP at pH 7.6. Calcium deposition was related to the amount of PO4 hydrolysed by matrix vesicle phosphatases from ATP and other phosphate esters. Ca2+ or Mg2+ was found to stimulate matrix vesicle. ATPase, but the hydrolysis of phosphoenolpyruvate, glucose 1-phosphate, β-glycerol phosphate and AMP was independent of either cation. All of the above substrates supported calcium deposition. 1 mM ATP was more effective than 5 mM in supporting calcium deposition, indicating inhibition of mineralization at higher ATP concentrations. Our results suggest that, in addition to concentrating calcium, veiscles provide phosphate from ATP for mineral formation and at the same time remove the inhibitory effect of ATP upon mineral deposition.  相似文献   

8.

Background

Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO3 )n) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization.

Principal Findings/Methodology

The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO4 3−) concentration while permitting the accumulation of a high total PO4 3− concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO4 3− and free calcium lowers the relative apatite saturation, preventing formation of apatite crystals. Identified in situ within resorbing bone and mineralizing cartilage by the fluorescent reporter DAPI (4′,6-diamidino-2-phenylindole), polyphosphate formation prevents apatite crystal precipitation while accumulating high local concentrations of total calcium and phosphate. When mineralization is required, tissue non-specific alkaline phosphatase, an enzyme associated with skeletal and cartilage mineralization, cleaves orthophosphates from polyphosphates. The hydrolytic degradation of polyphosphates in the calcium-polyphosphate complex increases orthophosphate and calcium concentrations and thereby favors apatite mineral formation. The correlation of alkaline phosphatase with this process may be explained by the destruction of polyphosphates in calcifying cartilage and areas of bone formation.

Conclusions/Significance

We hypothesize that polyphosphate formation and hydrolytic degradation constitute a simple mechanism for phosphate accumulation and enzymatic control of biological apatite saturation. This enzymatic control of calcified tissue mineralization may have permitted the development of a phosphate-based, mineralized endoskeleton that can be continually remodeled.  相似文献   

9.
10.

Purpose

Calcification is an important prognostic factor in aortic valve stenosis. However, there is no ultrasound (US) method available to accurately quantify calcification in this setting to date. We aimed to validate a new US method for measuring the amount of calcium in an in vitro model, and compare it to computed tomography (CT), the current imaging gold standard.

Materials and Methods

An agar phantom (2% agar) was made, containing 9 different amounts of calcium-hydroxyapatite Ca5(PO4)3OH (2 to 50mg). The phantoms were imaged with micro-CT and US (10 MHz probe). The calcium area (areacalcium) and its maximum pixel value (PVmax) were obtained. These values were summed to calculate CT and US calcium scores (∑(areacalcium × PVmax)) and volumes (∑areacalcium). Both US- and CT-calcium scores were compared with the calcium amounts, and with each other.

Results

Both calcium scores correlated significantly with the calcium amount (R2 = 0.9788, p<0.0001 and R2 = 0.8154, p<0.0001 for CT and US respectively). Furthermore, there was a significant correlation between US and CT for calcium volumes (R2 = 0.7392, p<0.0001) and scores (R2 = 0.7391, p<0.0001).

Conclusion

We developed a new US method that accurately quantifies the amount of calcium in an in vitro model. Moreover it is strongly correlated with CT.  相似文献   

11.
Calcium Efflux from Internally Dialyzed Squid Giant Axons   总被引:12,自引:10,他引:2       下载免费PDF全文
Calcium efflux has been studied in squid giant axons under conditions in which the internal composition was controlled by means of a dialysis perfusion technique. The mean calcium efflux from axons dialyzed with 0.3 µM calcium and 5 mM ATP was 0.26 pmol/cm2·s at 22°C. The curve relating the Ca efflux with the internal Ca concentration had a slope of about one for [Ca]i lower than 0.3µM and a slope smaller than one for higher concentrations. Under the above conditions replacement of [Na]o and [Ca]o by Tris and Mg causes an 80% fall in the calcium efflux. When the axons were dialyzed with a medium free of ATP and containing 2 mM cyanide plus 5µg/ml oligomycin, analysis of the perfusion effluent gave values of 1–4 µM ATP. Under this low ATP condition, replacement of external sodium and calcium causes the same drop in the calcium efflux. The same effect was observed at higher [Ca]i, (80 µM). These results suggest that the Na-Ca exchange component of the calcium efflux is apparently not dependent on the amounts of ATP in the axoplasm. Axons previously depleted of ATP show a significant transient drop in the calcium efflux when ATP is added to the dialysis medium. This effect probably represents the sequestering of calcium by the mitochondrial system. The consumption of calcium by the mitochondria of the axoplasm in dialyzed axons was determined to be of the order of 6.0 x 10-7 mol Ca++/mg of protein with an initial rate of 2.6 x 10-8 mol Ca++/min·mg of protein. Axons dialyzed with 2 mM cyanide after 8–10-min delays show a rise in the calcium efflux in the presence of "normal" amounts of exogenous ATP. This effect seems to indicate that cyanide, per se, can release calcium ions from internal sources.  相似文献   

12.
13.
Osteogenesis in cultures of limb mesenchymal cells   总被引:9,自引:0,他引:9  
The results of previous reports demonstrated that osteoblasts develop in cultures derived from phenotypically unexpressive stage 24 chick limb mesenchymal cells. The observations reported here suggest that initial cell plating densities may provide environmental conditions deterministic to a particular limb phenotype. Quantitative microscopic studies, histochemical localization of calcium phosphate, and electron microscopy indicate that osteoblasts develop in cultures derived from stage 24 limb mesenchymal cells. Additionally, 1–3% of the cells from stage 24 limbs are associated with mineral deposits when plated at initial high densities (5 × 106 cells per 35-mm culture dish), while more than 50% of the cells are associated with cartilage by Day 9. Cultures plated at intermediate seeding densities (between 2.0 and 2.5 × 106 cells per 35-mm culture dish) have minimal cartilage development, and approximately 20% of the cells are associated with mineral by Day 9. Furthermore, cultures prepared from stage 31 limb mesenchymal cells form well-developed bone nodules with both osteoblasts and osteocytes present, but no cartilage. It is clear from these observations and from a consideration of the initiation of osteogenesisin vivo that the initiation of bone development in the limb is not associated with cartilage development. Based on these studies and observations on the effect of nutrient factors on phenotypic expression in culture, an hypothesis is presented relating differential vascularization and nutrient flow to the determination of limb phenotypesin vivo.  相似文献   

14.
A time- and depth-dependent Poisson’s ratio has been observed during unconfined compression experiments on articular cartilage, but existing cartilage models have not fully addressed these phenomena. The goal of this study was to develop a model which is able to predict and explain these phenomena, while also being able to fit other experimental scenarios on full depth cartilage specimens such as confined and unconfined compressions. A biphasic (poroelastic), fiber-embedded cartilage model was developed. The heterogeneous material properties of the cartilage (aggregate modulus, void ratio tensile modulus) were extracted from reported experiments on individual layers of bovine articular cartilage. The nonlinear permeability material constants were found by fitting the overall response to published experimental data from confined compression. The matrix of the cartilage was modelled as an inhomogeneous isotropic biphasic material with nonlinear strain dependent permeability. Orthotropic layers were added as embedded elements to represent collagen fibers. Material parameters for these layers were derived from tensile tests of different layers of cartilage. With these predefined tensile parameters, the model showed a good fit with multi-step confined and unconfined compression experiments (R2=0.984 and 0.977, respectively) and could also predict the depth-dependent Poisson’s ratio (R2=0.981). The highlight of the model is the ability to explain the time-depth dependent Poisson's ratio and, by association, the strong effect of material inhomogeneity on local stress and strain patterns within the cartilage layer. This material model’s response may provide valuable new insight into potential initiation of cartilage fibrillation or delamination in whole-joint simulations.  相似文献   

15.
Ticagrelor is the first direct acting reversibly binding oral platelet P2Y(12) receptor antagonist. The parent molecule and the main metabolite (AR-C124910XX) are both able to block adenosine diphosphate-induced receptor signaling with similar potency. Drug binding to plasma proteins reduces free drug available for pharmacologic activity. Therefore, assessing unbound drug is important for interpretation of pharmacokinetic/pharmacodynamic findings. This paper describes the development and validation of an equilibrium dialysis/LC-MS/MS method for measuring unbound ticagrelor and AR-C124910XX in human plasma. Plasma samples (200μl) were dialysed against phosphate buffered saline (37 °C, 24h) in 96-well dialysis plates to separate unbound analytes. Drug-protein binding alterations during dialysis were minimized by maintaining physiologic conditions (pH 7.4, 37 °C). Ticagrelor and AR-C124910XX were quantified in dialysates (unbound fraction), retentates and plasma (total concentration) using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) methods. Calibration curves were established for the retentate and plasma (total concentration) in the ranges 5-5000 ng/ml (ticagrelor) and 2.5-2500 ng/ml (AR-C124910XX), and for the dialysate in the range 0.25-100 ng/ml (both analytes). Both ticagrelor and AR-C124910XX were highly protein bound (>99.8%), i.e. unbound fraction <0.2%. Yet, the methodology was successfully applied to determine unbound concentrations of ticagrelor and AR-C124910XX in clinical samples.  相似文献   

16.
The effects of growth hormone-dependent serum factors on amino acid transport and on cartilage cyclic AMP levels in embryonic chicken cartilage were studied in vitro. Cartilages incubated in medium containing rat serum showed a significantly greater uptake of α-amino [1-14C] isobutyrate or [1-14C] cycloeeucine than control cartilages incubated in medium alone. Normal rat serum (5%) added to the incubation medium also caused an increase in cartilage cyclic AMP content (from as little as 23% to as much as 109%). The factors in serum which increase cartilage cyclic AMP and amino acid uptake are growth hormone dependent, since neither growth hormone itself nor serum from hypophysectomized rats affects either parameter. Growth hormone treatment of hypophysectomized rats restores these serum factors. Studies comparing the ability of sera with varying amounts of growth hormone-dependent factors to stimulate α-aminoisobutyrate transport and to increase cartilage cyclic AMP show a striking linear correlation between the two effects (r = 0.977). Theophylline and prostaglandin E1, which raise cartilage cyclic AMP also increase α-aminoisobutyrate transport. Exogenous cyclic AMP, N6-monobutyrll cyclic AMP and N6, O2′-dibutyryl cyclic AMP increase cartilage α-aminoisobutyrate transport. The data are compatible with the thesis that growth hormone-dependent serum factors increase cartilage amino acid transport by elevating cartilage cyclic AMP.  相似文献   

17.
Articular cartilage defects are considered a major health problem because articular cartilage has a limited capacity for self-regeneration 1. Untreated cartilage lesions lead to ongoing pain, negatively affect the quality of life and predispose for osteoarthritis. During the last decades, several surgical techniques have been developed to treat such lesions. However, until now it was not possible to achieve a full repair in terms of covering the defect with hyaline articular cartilage or of providing satisfactory long-term recovery 2-4. Therefore, articular cartilage injuries remain a prime target for regenerative techniques such as Tissue Engineering. In contrast to other surgical techniques, which often lead to the formation of fibrous or fibrocartilaginous tissue, Tissue Engineering aims at fully restoring the complex structure and properties of the original articular cartilage by using the chondrogenic potential of transplanted cells. Recent developments opened up promising possibilities for regenerative cartilage therapies.The first cell based approach for the treatment of full-thickness cartilage or osteochondral lesions was performed in 1994 by Lars Peterson and Mats Brittberg who pioneered clinical autologous chondrocyte implantation (ACI) 5. Today, the technique is clinically well-established for the treatment of large hyaline cartilage defects of the knee, maintaining good clinical results even 10 to 20 years after implantation 6. In recent years, the implantation of autologous chondrocytes underwent a rapid progression. The use of an artificial three-dimensional collagen-matrix on which cells are subsequently replanted became more and more popular 7-9.MACT comprises of two surgical procedures: First, in order to collect chondrocytes, a cartilage biopsy needs to be performed from a non weight-bearing cartilage area of the knee joint. Then, chondrocytes are being extracted, purified and expanded to a sufficient cell number in vitro. Chondrocytes are then seeded onto a three-dimensional matrix and can subsequently be re-implanted. When preparing a tissue-engineered implant, proliferation rate and differentiation capacity are crucial for a successful tissue regeneration 10. The use of a three-dimensional matrix as a cell carrier is thought to support these cellular characteristics 11.The following protocol will summarize and demonstrate a technique for the isolation of chondrocytes from cartilage biopsies, their proliferation in vitro and their seeding onto a 3D-matrix (Chondro-Gide, Geistlich Biomaterials, Wollhusen, Switzerland). Finally, the implantation of the cell-matrix-constructs into artificially created chondral defects of a rabbit''s knee joint will be described. This technique can be used as an experimental setting for further experiments of cartilage repair.  相似文献   

18.
During long bone development and post-natal growth, the cartilaginous model of the skeleton is progressively replaced by bone, a process known as endochondral ossification. In the primary spongiosa, osteoclasts degrade the mineralized cartilage produced by hypertrophic chondrocytes to generate cartilage trabeculae that osteoblasts embed in bone matrix. This leads to the formation of the trabecular bone network of the secondary spongiosa that will undergo continuous remodeling. Osteoclasts are specialized in mineralized tissue degradation, with the combined ability to solubilize hydroxyapatite and to degrade extracellular matrix proteins. We reported previously that osteoclasts lacking Dock5 could not degrade bone due to abnormal podosome organization and absence of sealing zone formation. Consequently, adult Dock5/ mice have increased trabecular bone mass. We used Dock5/ mice to further investigate the different functions of osteoclast during endochondral bone formation. We show that long bones are overall morphologically normal in developing and growing Dock5/ mice. We demonstrate that Dock5/ mice also have normal hypertrophic cartilage and cartilage trabecular network. Conversely, trabecular bone volume increased progressively in the secondary spongiosa of Dock5/ growing mice as compared to Dock5+/+ animals, even though their osteoclast numbers were the same. In vitro, we show that Dock5/ osteoclasts do present acidic compartments at the ventral plasma membrane and produce normal amounts of active MMP9, TRAP and CtsK for matrix protein degradation but they are unable to solubilize minerals. These observations reveal that contrarily to bone resorption, the ability of osteoclasts to dissolve minerals is dispensable for the degradation of mineralized hypertrophic cartilage during endochondral bone formation.  相似文献   

19.
Attempts were made to isolate microsomes from Pisum sativum L. var. Alaska by low speed centrifugation of a postmitochondrial supernatant made 8 mm in Ca2+. However, the addition of Ca2+ in concentrations as low as 1 mm to the postmitochondrial supernatant resulted in extensive polysome degradation. Degradation was dependent on both Ca2+ concentration and the duration of incubation. Resuspension of isolated polysomes in Ca2+-containing buffer did not result in degradation, whereas resuspension in Ca2+-containing postpolysomal supernatant did. Both Ca2+ and a heat-labile factor in the supernatant were required for polysome degradation. The degradation in the homogenate with or without added Ca2+ could be reduced by (a) dilution with larger volumes of grinding buffer, (b) increasing the concentration of tris-HCl in the grinding buffer, (c) adding diethylpyrocarbonate or ethyleneglycol-bis (2-aminoethylether) tetraacetic acid (a specific calcium chelator) prior to homogenization or immediately after the addition of Ca2+. Endogenous Ca2+ can increase the destruction of polysomes during their isolation in this tissue, presumably by activating a ribonuclease. Addition of Ca2+ is not a useful technique for separating undegraded free and membrane-bound polyribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号