首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A quantitative triterpene analysis was made of latex stem tissue of Euphorbia lathyris. Young plants seedlings of E. lathyris were incubated with various labelled precursors. Incorporation into triterpenes was obtained from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose, [U-14C]glyoxylate, [2,3-14C]succinic acid, [1-14C]glycerol [U-14C]serine. Both sugars tyrosine appeared to be effective precursors in DOPA synthesis inside the laticifers. Exogenously supplied mevalonic acid was only involved in triterpene synthesis outside the laticifers. GC-RC of triterpenes synthesized from [U-14C]glucose revealed the origin of these compounds in the latex. The labelled triterpenes obtained after incorporation of the other mentioned labelled precursors were only partly synthesized in the laticifers. For quantitative data on latex triterpene synthesis seedlings were incubated with [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose [1-14C]acetate in the presence of increasing amounts of unlabelled substrate. From the amount of 14C incorporated into the triterpenes the amount of substrate directly involved in triterpene synthesis was calculated, as was the absolute triterpene yield. Sucrose showed the highest triterpene yield, equivalent to the daily increase of the triterpene content of growing seedlings. The possible significance of the other precursors in triterpene synthesis in the laticifers is discussed.  相似文献   

2.
《Insect Biochemistry》1986,16(1):17-23
The synthesis of [4-14C]cholesta-4,6-dien-3-one and [4-14C]3β-hydroxy-5α-cholestan-6-one is described. Both [4-14C]cholest-4-en-3-one and [4-14C]cholesta-4,6-dien-3-one were not incorporated significantly into ecdysteroids compared to [1α,2α-3H]cholesterol in fifth instar and maturing adult female Schistocerca gregaria. Similarly, [4-14C]3β-hydroxy-5α-cholestan-6-one was not incorporated significantly in the latter system. The results suggest that none of the three 14C-substrates are intermediates in ecdysteroid biosynthesis from cholesterol, although possible complications from permeability barriers cannot be discounted. [4-14C, 7-3H]7-dehydrocholesterol has been synthesized and incorporated into ecdysteroids in adult female Schistocerca gregaria and in Spodoptera littoralis pupae. Although approximately half the tritium was eliminated during ecdysteroid synthesis in S. gregaria, there was essentially complete retention of the tritium in Spodoptera. The results support the direct incorporation of 7-dehydrocholesterol into ecdysteroids and not via cholesterol. A possible explanation for the loss of appreciable tritium in S. gregaria is discussed.  相似文献   

3.
Calf brain membranes have previously been shown to enzymatically transfer N-acetyl[14C]glucosamine from UDP-N-acetyl[14C]glucosamine into N-acetyl[14C]glucosami-nylpyrophosphoryldolichol, N,N′-diacetyl[14C]chitobiosylpyrophosphoryldolichol and a minor labeled product with the chemical and chromatographic properties of a [14C]trisaccharide lipid (Waechter, C. J., and Harford, J. B. (1977) Arch. Biochem. Biophys.181, 185–198). This paper demonstrates that incubating calf brain membranes containing endogenous, prelabeled N-acetyl[14C]glucosaminyl lipids with unlabeled GDP-mannose enhances the formation of the [14C]trisaccharide lipid. The intact [14C]trisaccharide lipid behaves like a dolichol-bound trisaccharide, in which the glycosyl group is linked via a pyrophosphate bridge, when chromatographed on SG-81 paper or DEAE-cellulose. Mild acid treatment releases a water-soluble product that comigrates with authentic β-Man-(1→4)-β-GlcNAc(1→4)-GlcNAc. The free [14C]trisaccharide is converted to N,N′-diacetyl[14C]chitobiose by incubation with a highly purified β-mannosidase. These findings indicate that the trisaccharide lipid formed by calf brain membranes is β-mannosyl-N,N′-diacetylchito-biosylpyrophosphoryldolichol. The two glycosyltransferases responsible for the enzymatic conversion of the N-acetylglucosaminyl lipid to the trisaccharide lipid have been studied using exogenous, purified [14C]glycolipid substrates. Calf brain membranes enzymatically transfer N-acetylglucosamine from UDP-N-acetylglucosamine to exogenous N-acetyl[14C] glucosaminylpyrophosphoryldolichol to form [14C]disaccharide lipid. The biosynthesis of [14C]disaccharide lipid is stimulated by unlabeled UDP-N-acetylglucosamine under conditions that inhibit N-acetylglucosaminylpyrophosphoryldolichol synthesis. Unlike the formation of N-acetylglucosaminylpyrophosphoryldolichol the enzymatic addition of the second N-acetylglucosamine residue is not inhibited by tunicamycin. Exogenous purified [14C] disaccharide lipid is enzymatically mannosylated by calf brain membranes to form the [14C] trisaccharide lipid. The formation of the [14C]trisaccharide lipid from exogenous [14C] disaccharide lipid is stimulated by unlabeled GDP-mannose and Mg2+, and inhibited by EDTA. Exogenous dolichyl monophosphate is also inhibitory. These results strongly suggest that the calf brain mannosyltransferase involved in the synthesis of the trisaccharide lipid requires a divalent cation and utilizes GDP-mannose, not mannosylphosphoryldolichol, as the direct mannosyl donor.  相似文献   

4.
A simple, three-step conversion of 1,2-O-isopropylidene-α-d-glucofuranose into l-ascorbic acid, originally described by Bakke and Theander, was used to prepare l-[4-14C]ascorbic acid from milligram amounts of d-[3-14C]glucopyranose in 28% radioisotopic yield. In addition, l-[6-14C]- and l-[U-14C]-ascorbic acid were prepared from d-[1-14C]- and d-[U-14C]-glucopyranose, respectively. The procedure is useful for the synthesis of l-ascorbic acid bearing isotopic hydrogen, carbon, or oxygen atoms at specific positions, subject only to the availability of starting material.  相似文献   

5.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

6.
The effect of the polypeptide antibiotic, amphomycin, on the in vitro and in vivo synthesis of polyprenyl-linked sugars and glycoproteins in plants was examined. This antibiotic blocked the transfer of mannose from GDP-[14C]mannose into mannosyl-phos-phoryl-dolichol by a particulate enzyme preparation from mung beans and also inhibited the transfer of GlcNAc from UDP-[3H]GlcNAc to GlcNAc-pyrophosphoryl-polyisoprenol. The in vitro incorporation of these sugars into trichloroacetic acid-insoluble material was also markedly inhibited by this antibiotic. Since most of the radioactivity incorporated into this insoluble material is rendered water-soluble by treatment with pronase, it seems likely that these sugars are incorporated into glycoproteins whose synthesis is sensitive to amphomycin. Amphomycin also inhibited the transfer of glucose from UDP-[14C]glucose to steryl glucosides, although this system was less sensitive to antibiotic than was synthesis of the polyprenyl-linked sugars. The antibiotic did not block the in vitro transfer of glucose from UDP-[14C]glucose to β-glucans. In carrot slice cultures, amphomycin also inhibited the incorporation of [14C]mannose into glycolipid and glycoprotein, but it did not prevent the incorporation of [14C]lysine into protein.  相似文献   

7.
Sodium [1-14C]acetate, sodium [1-14C]propionate, sodium [2-14C]propionate, sodium [3-14C]propionate and sodium [methyl-14C]methylmalonate were readily incorporated into the cuticular hydrocarbons of nymphal stages of the cockroach Periplaneta fuliginosa both in vivo and in vitro, whereas no incorporation of [methyl-14C]methionine was observed. The alkanes of the nymphal stages of this insect are 25+% n-alkanes, 14% 3-methylalkanes, and 59+% internally branched monomethylalkanes, principally 13-methylpentacosane. Sodium [1-14C]acetate was incorporated into each class of alkane at about its percentage composition. In contrast, labeled sodium propionate and sodium methylmalonate were preferentially incorporated into the branched fractions. Radio-gas-liquid chromatography showed that sodium [1-14C]propionate was incorporated almost exclusively into 3-methyltricosane and 13-methylpentacosane, whereas sodium [1-14C]acetate was incorporated into each glc peak at about its percentage composition. These data suggest that propionate, incorporated during chain elongation, serves as the branching methyl group donor for both the 3-methyl and the internally branched monomethylalkanes in insects. The location of hydrocarbon synthesis in P. fuliginosa was studied using an in vitro tissue slice system. Excised cuticle slices, with adhering fat body tissue removed, gave good incorporation of labeled substrates into the hydrocarbon fraction. No hydrocarbon synthesis was observed in fat body preparations.  相似文献   

8.
The metabolism of oligodendrocytes has been studied using cultures of oligodendrocyte-enriched glial cells isolated from cerebra of 5–8-day old rats. Cultures containing 60–80% oligodendrocytes were incubated for 16h with [3-14C]acetoacetate, d-[3-14C]3-hydroxybutyrate, [U-14C]glucose, l-[U-14C]glutamine and [1-14C]pyruvate or [2-14C]pyruvate in the presence or absence of other oxidizable substrates. Labelled CO2 was collected as an index of oxidative metabolism and the incorporation of label into total lipids, fatty acids and cholesterol was used as an index of the de novo synthesis of lipids. Glucose, acetoacetate, D-3-hydroxybutyrate, pyruvate and l-lactate were measured to determine substrate utilization and product formation under various conditions. Our results indicate that glucose is rapidly converted to lactate and is a relatively poor substrate for oxidative metabolism and lipid synthesis. Ketone bodies were used as an energy source and as precursors for the synthesis of fatty acids and cholesterol. Preferential incorporation of acetoacetate into cholesterol was not observed. Exogenous pyruvate was incorporated into both the glycerol skeleton of complex lipids and into cholesterol and fatty acids. l-Glutamine appeared to be an important substrate for the energy metabolism of these cells.  相似文献   

9.
Leishmania mexicana mexicana promastigotes, axenic amastigotes, and amastigotes derived from Vero cells were examined for de novo purine synthesis and mechanisms of purine salvage. Both promastigotes and axenic amastigotes were incapable of de novo purine synthesis, as shown by the lack of [14C]formate and [14C]glycine incorporation into purine nucleotide pools. However, the ready incorporation of [14C]hypoxanthine, [14C]adenine, and [14C]guanine suggested that purine salvage pathways were operating. In addition, a significant percentage (?60%) of the total label from these purine precursors was associated with adenylate nucleotides. Nucleotide pool levels of axenic amastigotes were consistently greater but the specific activities were less than those of promastigotes, suggesting a slower rate of purine metabolism in the axenic amastigote form. Similar results were obtained from amastigotes isolated from infected Vero cells.  相似文献   

10.
Incorporation of [14C]-phenylalanine and [14C]-methionine into cinnamon cuttings suggests that synthesis of eugenol from phenylalanine involves exchange of the terminal carbon in the side chain with that from a donor molecule such as methionine whereas synthesis of cinnamic aldehyde incorporates phenylalanine in toto.  相似文献   

11.
The relative efficiency of incorporation of the exogenously supplied primary precursors [2-14C]acetate, [U-14C]glucose and [U-14C]sucrose into essential oil was determined in the immature leaves of threeCymbopogon species(C. martinii,C. winterianus andC. flexuosus). Acetate was most efficiently incorporated into essential oil inC. winterianus andC. flexuosus, whereas glucose was the best precursor inC. martinii. The observations are consistent when expressed as radioactivity [Bq] of essential oil per leaf, as percent incorporation or moles of precursors utilized for essential oil synthesis. Thus, there is selectivity in the efficiency of precursor utilization for the oil synthesis inCymbopogon species.  相似文献   

12.
Dihydroxy[3-14C]acetone phosphate was prepared enzymatically from [1-14C]glucose and used as a substrate in a partially purified quinolinate synthetase system prepared from Escherichia coli mutants. Carbon-by-carbon degradation of the resulting [14C]quinolinate showed that 96% of the 14C was located in carbon-4, indicating that carbon-3 of dihydroxyacetone phosphate condenses with carbon-3 of aspartate in quinolinate synthesis in E. coli.  相似文献   

13.
Methods are described for the quantitative extraction and separation of the pyrimidine glucosides, vicine and convicine. The contents of these two substances in germinating seeds and young seedlings of Vicia faba remain constant for the first 2 weeks. Net synthesis and accumulation of vicine and convicine occurs in developing seeds. That the synthesis occurs within the pod and the pyrimidine glucosides are not translocated into them, was shown by injection of 14C-labelled precursors into the pods. [1-14C]- and [2-14C]-acetate were weakly incorporated but much greater incorporation was observed with [U-14C]-aspartic acid and [6-14C]-orotic acid. The results indicate that the orotic acid pathway is involved in the formation of the pyrimidine ring of both vicine and convicine.  相似文献   

14.
Procedures for the preparation of UDP-N-[1-14C]acetyl-d-glucosamine and UDP-N-[1-14C]acetyl-d-galactosamine with very high specific activities are deseribed. The overall yield based on the amount of [1-14C]acetate used is greater than 80%. The N-acetyl-d-glucosamine-α-1-phosphate used in this synthesis is prepared by phosphorylation of tetraacetyl-d-N-acetylglucosamine with crystalline phosphoric acid. N-acetyl-d-glucosamine-α-1-phosphate is then deacetylated in anhydrous hydrazine with hydrazine sulfate as a catalyst. d-glucosamine-α-1-phosphate is N-acetylated with [14C]acetate using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as the coupling agent. The acetylated product is coverted to the UDP derivative with yeast UDP-N-acetyl-d-glucosamine pyrophosphorylase. UDP-N-[1-14C]acetylgalactosamine is prepared by acetylation of UDP-galactosamine using [1-14C]acetate and N-ethoxy-carbonyl-2-ethoxy-1,2-dihydroquinoline. UDP-galactosamine is prepared enzymatically using galactokinase and galactose-1-phosphate uridyltransferase. The labeled products, isolated and characterized by ion-exchange and paper chromatography, were active as substrates in glycosyl transferase systems.  相似文献   

15.
Comparative feeding experiments in CuCl2,- and UV-treated lucerne (Medicago sativa) seedlings have shown that 2′,4,4′-trihydroxychalcone-[carbonyl-14C] and formononetin-[Me-14C] but not 2′,4′-dihydroxy-4-methoxychalcone-[carbonyl- 14C] or daidzein-[4-14C] were incorporated into the phytoalexins demethylhomopterocarpin, sativan and vestitol, and also into 9-O-methylcoumestrol. The synthesis of 9-O-methylcoumestrol is greatly stimulated by this abiotic treatment but coumestrol production is not noticeably affected. Daidzein and the trihydroxychalcone were precursors of coumestrol. The results are interpreted in favour of a mechanism in which methylation is an integral part of the aryl migration process associated with the biosynthesisof 4′-methoxyisoflavonoids. Formononetin, 2′,7-dihydroxy-4′-methoxyisoflavone-[Me-14C], 7-hydroxy-4′-methoxyisoflavanone-[Me-14C] and 2′,7-dihydroxy-4′-methoxyisoflavanone-[Me-14C] were all excellent precursors of demethylhomopterocarpin, sativan, vestitol and 9-O-methylcoumestrol, and thus a metabolic grid may be involved in their biosynthetic origin.  相似文献   

16.
Polysomes were isolated from Aspergillus niger and were characterized on sucrose gradients in several ways. First, they were found to be susceptible to degradation by treatment with RNase or EDTA. Second, they were labeled after treating mycelia with short pulses of [3H]uridine or [3H]leucine prior to polysome isolation. Third, they were capable of stimulating incorporation of [3H]leucine into trichloroacetic acid-precipitable material in a chick reticulocyte cell-free protein-synthesizing system. When isolated [3H]leucine pulse-labeled polysomes were treated with either EDTA-RNase or puromycin, 80–90% of the radioactivity was released, indicating that only the nascent polypeptide chains were labeled. After exposing mycelia for 1 min to [14C]mannose, the polysomes were exclusively labeled, indicating that initial glycosylation takes place on nascent polypeptide chains. Preincubation of mycelia with 2-deoxyglucose followed by pulse-labeling with [3H]leucine and [14C]mannose showed that 2-deoxy-d-glucose inhibits both protein synthesis and glycosylation. However, similar preincubation with tunicamycin caused an 80% drop in [14C]mannose label in the polysomes, but only a 10–20% drop of [3H]leucine label, suggesting that glycosylation of nascent chains in A. niger involves an oligosaccharide-lipid intermediate, since it has been shown that tunicamycin inhibits the synthesis of such an intermediate. When isolated polysomes were placed into an in vitro glycosylating mixture containing Mn2+, GDP-[14C]mannose, and smooth membranes from A. niger nascent chains were labeled. This reaction was shown to be dependent on addition of polysomes to the mixture and was not inhibited by 2-deoxy-d-glucose or tunicamycin. Both in vivo and in vitro glycosylated nascent chains were found to have about the same size range, and so it is suggested that in vitro no new oligosaccharide chains were synthesized, but preexisting chains were extended.  相似文献   

17.
Radioactive polysaccharide was synthesized when uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (containing some uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate)) was incubated with a particulate enzyme preparation from Lemna minor. Characterization experiments established that the product: (i) was insoluble in methanol and water, (ii) contained d-[U-14C]apiose (75%) and d-[U-14C]xylose (25%), and (iii) was soluble in 1% ammonium oxalate. The material solubilized by ammonium oxalate (solubilized product): (i) was separated into five fractions by column chromatography with diethylaminoethyl-Sephadex (DEAE-Sephadex), (ii) contained [U-14C]apiobiose side chains that were removed by hydrolysis at pH 4, and (iii) was degraded by fungal pectinase. Both d-[U-14C]apiose residues of the [U-14C]apiobiose side chains were synthesized in vivo since radioactivity was distributed equally between the two residues. The presence of uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) during synthesis of radioactive polysaccharide resulted in: (i) an increase in the incorporation of radioactive d-[U-14C]apiose into solubilized product, (ii) an increase in the ratio of d-[U-14C]apiose to d-[U-14C]xylose present in solubilized product, (iii) an increase in the amount of [U-14C]apiobiose plus d-[U-14C]apiose released from the solubilized product by hydrolysis at pH 4, and (iv) a tighter binding of the solubilized product to DEAE-Sephadex. These results show that apiogalacturonans similar to or the same as those synthesized by the intact plant were synthesized in the particulate enzyme preparation isolated from L. minor. [14C]Apiogalacturonans completely free of d-[U-l4C]xylose were not isolated. The [14C]apiogalacturonan with the least d-[U-14C]xylose still had 4.8% of its radioactivity present in d-[U-14C]xylose. The possibility remains that d-xylose is a normal constituent of the apiogalacturonans of the cell wall of L. minor.  相似文献   

18.
Moore BD  Seemann JR 《Plant physiology》1992,99(4):1551-1555
Results presented here indicate that 2′-carboxyarabinitol (CA) is the in vivo precursor and product of 2′-carboxyarabinitol 1-phosphate (CA1P) metabolism in leaves. When [2-14C]CA was fed in the light to leaves of five species known to be highly active in CA1P metabolism (Phaseolus vulgaris, Lycopersicon esculentum, Helianthus annuus, Petunia hybrida, and Beta vulgaris), [14C]CA1P was formed in the dark. Reillumination of a Phaseolus leaf caused this [14C]CA1P to be rapidly metabolized to [14C]CA (t½ = 1 min). The epimer 2′-carboxyribitol could not substitute for CA in the dark synthesis of CA1P, and CA in the anionic form was a better substrate than CA in the lactone form. In leaves of Phaseolus vulgaris, the active CA pool size used in the dark synthesis of CA1P is between about 70 and 110 nanomoles per milligram of chlorophyll. The photosynthetic electron transport inhibitor diuron did not affect the dark synthesis of [14C]CA1P, but did greatly reduce the rate of its subsequent light degradation (t½ = approximately 10 min). Dark synthesis of [14C]CA1P was inhibited by dithiothreitol and NaF. From the present data, we suggest that CA1P and CA participate in a metabolic substrate cycle in vivo.  相似文献   

19.
A particulate enzyme preparation isolated from Chrysochromulina chiton catalysed the transfer of [U-14C]-glucose from UDP [U-14C]-Glc to a water-soluble small molecular weight material. Chemical and enzymic analysis of this material showed that it was a phenolic compound to which are attached two β(1–3) glucosides. Properties of the UDP glucose: glucosyltransferase involved in the synthesis of this material have been studied. The UDP glucose glucosyl-transferase was found to be associated with the rough endoplasmic reticulum. A possible function of this phenolic compound in the orientation of membranes for the synthesis of scales in C. chiton has been discussed.  相似文献   

20.
A method is described for the chemical synthesis of stigmasta-5,24-dien-3β-ol-[26-14C] and (24S)-24-ethylcholesta-5,25-dien-3β-ol-[26-14C] (clerosterol). 28-Isofucosterol-[7-3H2] fed to developing barley seedlings (Hordeum vulgare) was incorporated into sitosterol and stigmasterol confirming the utilisation of a 24-ethylidene sterol intermediate in 24α-ethyl sterol production in this plant. Also, the use of mevalonic acid-[2-14C(4R)-4-3H1] verified the loss of the C-25 hydrogen of 28-isofucosterol during its conversion into sitosterol and stigmasterol in agreement with the previously postulated isomerisation of the 24-ethylidene sterol to a Δ24(25)-sterol prior to reduction. However, feeding stigmasta-5,24-dien-3β-ol [26-14C] to barley seedlings gave very low incorporation into sitosterol. Attempts to trap radioactivity from mevalonic-[2-14C(4R)-4-3H1] in stigmasta-5,24-dien-3β-ol when this unlabelled sterol was administered to barley seedlings gave only a very small incorporation although both 28-isofucosterol and sitosterol were labelled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号