首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to fractionate mouse liver cytochrome P-450 in its native state, electrofocusing systems were examined under conditions in which the surface net charge of solubilized proteins was preserved. A mixture of the zwitterionic detergent, SB14, and the nonionic detergent, Triton X-100, appeared capable of completely solubilizing intergral membrane proteins. Since charge properties were not altered, it was possible, for the first time, to focus basic membrane proteins in such detergent mixtures. The pH gradients (pI range 7–11) formed in the presence of these detergents were sufficiently stable to allow electrofocusing to the steady state of the solubilized membrane proteins. By the criterion of patter constancy, these conditions were achieved within 15 h, 0–4°C, at 200 V in 6-cm gels of 5% T/15% CBis with 0.1 n H2SO4 and 0.1 n KOH as anolyte and catholyte, respectively. It was expected that the native state of solubilized proteins could be maintained in such systems. Cytochrome P-450 proved to be denatured, however, by concentrations of these detergents required for complete solubilization of mouse liver endoplasmic reticulum.  相似文献   

2.
The capacity of a range of aliphatic alkanes (C6–C16), intermediates of n-decane oxidation and sodium dodecyl sulphate (SDS) to induce decane-mineralization activity in the cells of Pseudomonas C12B was compared with that for n-decane. The comparison on quantitative basis had two serious limitations: low solubility of tested inducers in aqueous solutions and their toxicity to bacterial cells. Carbon chain length and the presence of hydroxyl group were the important factors for induction activity. However, presence of hydroxyl groups at both ends of alkyl chain prevented the induction of decane-mineralization activity. Good induction activity by SDS was caused either by the presence of free end of alkyl chain, or by bacterial hydrolysis of sulphate group to yield alcohol, which in turn served as true inducer. The presence of SDS in the culture medium with n-decane as main source of carbon and energy accelerated the growth of Pseudomonas C12B. SDS disappeared from the culture medium in early stages of cultivation suggesting preferential degradation by the bacterium, while the consumption of n-decane was accelerated. This may be associated with the capacity of SDS to induce decane-mineralization system in Pseudomonas C12B and/or with the ability of SDS to stimulate the surface attachment of competent bacteria resulting in the close proximity of the cells with alkane droplets, and thus, enhanced breakdown of the hydrocarbon pollutant.  相似文献   

3.
Protein stability, as measured by irreversible protein aggregation, is one of the central difficulties in the handling of detergent-solubilized membrane proteins. We present a quantitative analysis of the stability of the Escherichia coli lactose (lac) permease and a series of lac permease fusion proteins containing an insertion of cytochromeb562, T4 lysozyme or β-lactamase in the central hydrophilic loop of the permease. The stability of the proteins was evaluated under a variety of storage conditions by both a qualitative SDS-PAGE assay and by a quantitative hplc assay. Long-chain maltoside detergents were more effective at maintaining purified protein in solution than detergents with smaller head groups and/or shorter alkyl tails. A full factorial experiment established that the proteins were insensitive to sodium chloride concentrations, but greatly stabilized by glycerol, low temperature and the combination of glycerol and low temperature. The accurate quantitation of the protein by absorbance spectroscopy required exclusion of all contact with clarified polypropylene or polyvinyl chloride (PVC) materials. Although some of the fusion proteins were more prone to aggregation than the wild-type permease, the stability of a fusion protein containing a cytochromeb562 insertion was indistinguishable from that of native lac permease.  相似文献   

4.
Molecular dynamics simulations have been used to characterize the effects of transfer from aqueous solution to a vacuum to inform our understanding of mass spectrometry of membrane-protein-detergent complexes. We compared two membrane protein architectures (an α-helical bundle versus a β-barrel) and two different detergent types (phosphocholines versus an alkyl sugar) with respect to protein stability and detergent packing. The β-barrel membrane protein remained stable as a protein-detergent complex in vacuum. Zwitterionic detergents formed conformationally destabilizing interactions with an α-helical membrane protein after detergent micelle inversion driven by dehydration in vacuum. In contrast, a nonionic alkyl sugar detergent resisted micelle inversion, maintaining the solution-phase conformation of the protein. This helps to explain the relative stability of membrane proteins in the presence of alkyl sugar detergents such as dodecyl maltoside.  相似文献   

5.
A comparison has been made of published techniques for the resolution of rat liver microsomal proteins by two-dimensional electrophoresis. The method of Kaderbhai and Freedman (Biochim. Biophys. Acta 601 (1980) 21-20) gives good resolution of acidic proteins but excludes hydrophobic integral membrane proteins of pI > 7, including cytochrome P-450 apoproteins. The method of Vlasuk and Walz (Anal. Biochem. 105 (1980) 112–120) gives good resolution of proetins of pI 5–8, including cytochromes P-450, but fails to resolve a major acidic protein of pI < 5. Isoelectric focusing of microsomal proteins is improved by the use of high concentrations of urea and low concentrations of sample proteins. Zwitterionic detergents of the general formula R·N+(CH3)2·CH2CH2CH2SO3? are effective in solubilizing microsomal proteins, either alone or in presence of non-ionic detergent; compounds with a long alkyl chain (C14 or C16) are most effective. Isoelectric focusing of microsomal proteins solubilized by zwitterionic detergents did not give good resolution, probably because of incomplete dissociation and denaturation of the proteins. These detergents could not be used in the presence of high concentrations of urea. Although no single method of two-dimensional electrophoresis gives complete resolution of the whole range of microsomal proteins, conditions can be optimized for specific sets of proteins of interest. The technique can be used to monitor differences in microsomal composition between rat strains, or following induction, and for a variety of other studies.  相似文献   

6.
Polyacrylamide gel electrophoresis in the presence of the cationic detergent, cetyltrimethylammonium bromide (CTAB), has been previously used to obtain more accurate estimates of the molecular weight of certain highly charged and membrane protein subunits that exhibit anomalous electrophoretic behavior in the presence of sodium dodecyl sulfate (SDS). The improved method reported herein is comparable to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) method in simplicity, time, and quality of gels, but the CTAB-PAGE method appears to have a wider range of application for diverse types of proteins. The technique may also be used for verification of molecular weight data and thus detection of possible anomalous results obtained using the anionic SDS-PAGE method. The described method eliminates the precipitates formed between ammonium persulfate and cationic detergents during gel polymerization and between cationic detergents and the protein dyes during staining that have complicated previous methods. The reliability of the technique is indicated by the high correlation coefficient (?0.97) between Rf and molecular weight. Data are presented to indicate that the method can be used to estimate the subunit molecular weight of unknown proteins with a 95% level of confidence.  相似文献   

7.
Molecular dynamics simulations have been used to characterize the effects of transfer from aqueous solution to a vacuum to inform our understanding of mass spectrometry of membrane-protein-detergent complexes. We compared two membrane protein architectures (an α-helical bundle versus a β-barrel) and two different detergent types (phosphocholines versus an alkyl sugar) with respect to protein stability and detergent packing. The β-barrel membrane protein remained stable as a protein-detergent complex in vacuum. Zwitterionic detergents formed conformationally destabilizing interactions with an α-helical membrane protein after detergent micelle inversion driven by dehydration in vacuum. In contrast, a nonionic alkyl sugar detergent resisted micelle inversion, maintaining the solution-phase conformation of the protein. This helps to explain the relative stability of membrane proteins in the presence of alkyl sugar detergents such as dodecyl maltoside.  相似文献   

8.
The effect of nonionic detergents of the n-alkyl-β-D-glucopyranoside class on the ordering of lipid bilayers and the dynamics of membrane-embedded peptides were investigated with 2H- and 31P-NMR. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was selectively deuterated at methylene segments C-2, C-7, and C-16 of the two fatty acyl chains. Two trans-membrane helices, WALP-19 and glycophorin A71-98, were synthesized with Ala-d3 in the central region of the α-helix. n-Alkyl-β-D-glucopyranosides with alkyl chains with 6, 7, 8, and 10 carbon atoms were added at increasing concentrations to the lipid membrane. The bilayer structure is retained up to a detergent/lipid molar ratio of 1:1. The insertion of the detergents leads to a selective disordering of the lipids. The headgroup region remains largely unaffected; the fatty acyl chain segments parallel to the detergent alkyl chain are only modestly disordered (10-20%), whereas lipid segments beyond the methyl terminus of the detergent show a decrease of up to 50%. The change in the bilayer order profile corresponds to an increase in bilayer entropy. Insertion of detergents into the lipid bilayers is completely entropy-driven. The entropy change accompanying lipid disorder is equivalent in magnitude to the hydrophobic effect. Ala-d3 deuterated WALP-19 and GlycA71-97 were incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine at a peptide/lipid molar ratio of 1:100 and measured above the 1,2-dimyristoyl-sn-glycero-3-phosphocholine gel/liquid-crystal phase transition. Well-resolved 2H-NMR quadrupole splittings were observed for the two trans-membrane helices, revealing a rapid rotation of the CD3 methyl rotor superimposed on an additional rotation of the whole peptide around the bilayer normal. The presence of detergent fluidizes the membrane and produces magnetic alignment of bilayer domains but does not produce essential changes in the peptide conformation or dynamics.  相似文献   

9.
Proteins solubilized from enriched soybean root plasma membrane with sodium dodecyl sulphate (SDS) and selected non-denaturing detergents (octyl-β-d-glucopyranoside, Zwittergent 312, Zwittergent 314, Zonyl FSK, and Nonidet P-40) were electrophoresed in two-dimensions by standard procedures. The basic electrophoretogram ‘fingerprint’ was similar for all detergents tested. However, differences in the total number of polypeptides resolved and the presence or absence of certain polypeptides on specific two-dimensional gels indicated some selectivity. Of all detergents tested, SDS solubilized the most polypeptides (ca 95) and provided the best resolution. The other detergents solubilized 50–80 polypeptides with varying resolution. Of those tested, octyl-β-d-glucopyranoside consistently provided the best balance between the number of polypeptides resolved (ca 70) and the level of resolution. The results suggest that selected detergents may prove useful in plant plasma membrane studies which require non-denaturing conditions.  相似文献   

10.
《Molecular membrane biology》2013,30(5-8):139-155
Abstract

Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-β-D-glucoside (β-OG), n-dodecyl-β-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.  相似文献   

11.
Elastin‐like polypeptide (ELP) fusions have been designed to allow large‐scale, nonchromatographic purification of many soluble proteins by using the inverse transition cycling (ITC) method; however, the sensitivity of the aqueous lower critical solubility phase transition temperature (Tt) of ELPs to the addition of cosolutes, including detergents, may be a potential hindrance in purification of proteins with surface hydrophobicity in such a manner. To identify detergents that are known to solubilize such proteins (e.g., membrane proteins) and that have little effect on the Tt of the ELP, we screened a number of detergents with respect to their effects on the Tt and secondary structures of a model ELP (denoted here as ELP180). We found that mild detergents (e.g., n‐dodecyl‐β‐D ‐maltoside, Triton‐X100, and 3‐[(3‐cholamidopropyl) dimethylamino]‐1‐propanesulfonate) do not alter the phase transition behavior or structure (as probed by circular dichroism) of ELP180. This result is in contrast to previous studies that showed a strong effect of other detergents (e.g., sodium dodecylsulfate) on the Tt of ELPs. Our results clearly indicate that mild detergents do not preclude ITC‐based separation of ELPs, and thus that ELP fusions may prove to be useful in the purification of detergent‐solubilized recombinant hydrophobic proteins, including membrane proteins, which are otherwise notoriously difficult to extract and purify by conventional separation methods (e.g., chromatography). © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The hydrophobic nature of most membrane proteins severely complicates their extraction, proteolysis and identification. Although detergents can be used to enhance the solubility of the membrane proteins, it is often difficult for a detergent not only to have a strong ability to extract membrane proteins, but also to be compatible with the subsequent proteolysis and mass spectrometric analysis. In this study, we made evaluation on a novel application of sodium laurate (SL) to the shotgun analysis of membrane proteomes. SL was found not only to lyse the membranes and solubilize membrane proteins as efficiently as SDS, but also to be well compatible with trypsin and chymotrypsin. Furthermore, SL could be efficiently removed by phase transfer method from samples after acidification, thus ensuring not to interfere with the subsequent CapLC-MS/MS analysis of the proteolytic peptides of proteins. When SL was applied to assist the digestion and identification of a standard protein mixture containing bacteriorhodoposin and the proteins in rat liver plasma membrane-enriched fractions, it was found that, compared with other two representative enzyme- and MS-compatible detergents RapiGest SF (RGS) and sodium deoxycholate (SDC), SL exhibited obvious superiority in the identification of membrane proteins particularly those with high hydrophobicity and/or multiple transmembrane domains.  相似文献   

13.
The effects produced on bacteriorhodopsin by low concentrations of several detergents have been studied by absorption and fourth-derivative spectrophotometry. Sodium dodecyl sulfate induces the appearance of the blue form of bacteriorhodopsin (λmax = 600 nm) at pH values up to 7.0 in a reversible manner. The apparent pK of the purple-to-blue transition raised with increasing concentration of SDS. Of the other detergents tested, only sodium dodecyl-N-sarcosinate showed a slight red-shift of the absorption band to 580 nm, whereas sodium taurocholate, Triton X-100 and cetyltrimethylammonium bromide did not favour the appearance of the blue form. The effect of SDS was found to be consistent with a localized conformational change that moves away the counter-ion of the protonated Schiff base.  相似文献   

14.
The effect of modifying fatty acyl composition of cellular membrane phospholipids on receptor-mediated intracellular free Ca2+ concentration ([Ca2+]i) increase was investigated in a leukemic T cell line (JURKAT). After growing for 72 h in medium supplemented with unsaturated fatty acids (UFAs) and α-tocopherol, the fatty acyl composition of membrane phospholipids in JURKAT cells was extensively modified. Each respective fatty acid supplemented in the culture medium was readily incorporated into phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine in the JURKAT cells. The total n ? 6 fatty acyl content was markedly reduced in phosphatidylinositol and phosphatidylcholine of cells grown in the presence of n ? 3 fatty acids (α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid). Conversely, in the presence of n ? 6 fatty acids (linoleic acid and arachidonic acid), the total n ? 3 fatty acyl content was reduced in all the phospholipids examined. In n ? 3 and n ? 6 polyunsaturated fatty acid (PUFA) modified JURKAT cells, the total n ? 9 monounsaturated fatty acyl content in the phospholipids were markedly reduced. Changing the fatty acyl composition of membrane phospholipids in the JURKAT cells appear to have no affect on the presentation of the T cell receptor/CD3 complex or the binding of anti-CD3 antibodies (OKT3) to the CD3 complex. However, the peak increase in [Ca2+]i and the prolonged sustained phase elicited by OKT3 activation were suppressed in n ? 3 and n ? 6 PUFA but not in n ? 9 monounsaturated fatty acid modified cells. In Ca2+ free medium, OKT3-induced transient increase in [Ca2+]i, representing Ca2+ release from the inositol 1,4,5-triphosphate-sensitive Ca2+ stores, were similar in control and UFA modified cells. Using Mn2+ entry as an index of plasma membrane Ca2+ permeability, the rate of fura-2 fluorescence quenching as a result of Mn2+ influx stimulated by OKT3 in n ? 9 monounsaturated fatty acid modified cells was similar to control cells, but the rates in n ? 3 and n ? 6 PUFA modified cells were significantly lower. These results suggest that receptor-mediated Ca2+ influx in JURKAT cells is sensitive to changes in the fatty acyl composition of membrane phospholipids and n ? 9 monounsaturated fatty acids appears to be important for the maintenance of a functional Ca2+ influx mechanism.  相似文献   

15.

Background

Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation.

Methodology/Principal Findings

Anionic calix[4]arene based detergents (C4Cn, n = 1–12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5–24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein.

Conclusion/Significance

These compounds seem promising to extract in a functional state membrane proteins obeying the positive inside rule. In that context, they may contribute to the membrane protein crystallization field.  相似文献   

16.
The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.  相似文献   

17.
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.  相似文献   

18.
We recently demonstrated that the anionic detergent sodium dodecyl sulfate (SDS) specifically interacts with the anesthetic binding site in horse spleen apoferritin, a soluble protein which models anesthetic binding sites in receptors. This raises the possibility of other detergents similarly interacting with and occluding such sites from anesthetics, thereby preventing the proper identification of novel anesthetic binding sites. n-Dodecyl β-D-maltoside (DDM) is a non-ionic detergent commonly used during protein-anesthetic studies because of its mild and non-denaturing properties. In this study, we demonstrate that SDS and DDM occupy anesthetic binding sites in the model proteins human serum albumin (HSA) and horse spleen apoferritin and thereby inhibit the binding of the general anesthetics propofol and isoflurane. DDM specifically interacts with HSA (Kd?=?40?μM) with a lower affinity than SDS (Kd?=?2?μM). DDM exerts all these effects while not perturbing the native structures of either model protein. Computational calculations corroborated the experimental results by demonstrating that the binding sites for DDM and both anesthetics on the model proteins overlapped. Collectively, our results indicate that DDM and SDS specifically interact with anesthetic binding sites and may thus prevent the identification of novel anesthetic sites. Special precaution should be taken when undertaking and interpreting results from protein-anesthetic investigations utilizing detergents like SDS and DDM.  相似文献   

19.
Photosystem (PS) II particles retaining a high rate of O2 evolution were isolated from the mesophilic filamentous cyanobacterium, Spirulina platensis. To achieve high production of PSII complexes in the cells, irradiance from halogen incandescent lamps was used. Disruption of cells by vibration of glass beads proved to be the most suitable procedure for isolation of thylakoid membranes. The selectivity of detergents for PSII particle preparation rose in the order of Triton X-100 < decyl-β-D-glucopyranoside < dodecyldimethyl-aminooxide < n-heptyl-β-D-thioglucoside < N-dodecyl-N,N-dimethylammonio-3-propane sulphonate < n-octyl-β-thioglycoside < octylglucoside < n-dodecyl-β-D-maltoside. The last four detergents yielded extracts, from which pure PSII particles not contaminated by PSI complexes could be obtained by sucrose-gradient centrifugation (20–45%) at the 43% sucrose level. We assumed both the acceptor and donor sides of the isolated n-dodecyl-β-D-maltoside (DM) particles to be intact due to high oxygen production by DM particles [1,500 meq(e?) mol?1 (Chl) s?1] achieved in the presence of all artificial acceptors tested. The PSII particle fraction from the sucrose gradient was used with immobilized metal (Cu2+) affinity chromatography (IMAC) for the preparation of the PSII core complex. By washing the column with a MES buffer containing MgCl2 and CaCl2, the phycobiliproteins were stripped off. The PSII core complex was eluted in a buffer containing 1% DM, mannitol, MgCl2, NaCl, CaCl2, and ?-aminocaproic acid. SDS-PAGE of the core complex provided pure bands of D1 and D2 proteins and PsbO protein from thylakoid membrane, which were used to raise polyclonal antibodies in rabbits. These antibodies recognized D1 and D2 not only as monomers of 31 and 32 kDa proteins, but also as heterodimers of D1, D2 corresponding to the band of 66 kDa on SDS-PAGE. This was in contrast to antibodies of synthetic determinants, which reacted only with the monomers of D1 and D2 proteins. These negative reactions against heterodimers of D1, D2 supported the hypothesis that dimeric forms of PSII reaction centre proteins have a C-terminal sequence sterically protected against a reaction with specific antibodies.  相似文献   

20.
A prerequisite for the purification of any protein to homogeneity is that the protein is not non-specifically associated with other proteins especially during the final stage(s) of the fractionation procedure. This requirement is not so often fulfilled when nonionic detergents (for instance Triton X-100) are used for solubilization of membrane proteins. The reason is that these detergents are not efficient enough to prevent the protein of interest from forming aggregates with other proteins upon contact with chromatographic or electrophoretic supporting media, which, due to their polymeric nature, have a tendency to induce aggregation of other polymers, for instance, hydrophobic proteins. The aggregation can be avoided if sodium dodecyl sulfate (SDS) is employed as detergent. We therefore suggest that membrane proteins should be purified by conventional methods in the presence of SDS and that the purified proteins, which are in a denatured state, are allowed to renature. There is good change to renature internal membrane proteins since they should not be so susceptible to denaturation by detergents as are water-soluble proteins because the natural milieu of the former proteins is lipids which in fact are detergents. In this paper we present a renaturation method based on the removal of SDS by addition of a large excess of G 3707, a nonionic detergent. By this technique we have renatured a 5'-nucleotidase from Acholeplasma laidlawii and a neuraminidase from influenza virus. The enzyme activities were higher (up to 6-fold) after the removal of SDS than prior to the addition of SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号