首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“Genome-based precision feeding” is a concept that involves the application of customised diets to different genetic groups of cattle. We investigated the effects of the genomic estimated breeding value (gEBV) and dietary energy to protein ratio (DEP) on growth performance, carcass traits, and lipogenic gene expression in Hanwoo (Korean cattle) steers. Forty-four Hanwoo steers (BW = 636 kg, age = 26.9 months) were genotyped using the Illumina Bovine 50 K BeadChip. The gEBV was calculated using genomic best linear unbiased prediction. Animals were separated into high gEBV of marbling score or low-gMS groups based on the upper and lower 50% groupings of the reference population, respectively. Animals were assigned to one of four groups in a 2 × 2 factorial arrangement: high gMS/high DEP (0.084 MJ/g), high gMS/low DEP (0.079 MJ/g), low gMS/high DEP, and low gMS/low DEP. Steers were fed concentrate with a high or low DEP for 31 weeks. The BW tended to be higher (0.05 < P < 0.1) in the high-gMS groups compared to the low-gMS groups at 0, 4, 8, 12, and 20 weeks. The average daily gain (ADG) tended to be lower (P = 0.08) in the high-gMS group than in the low-gMS group. Final BW and measured carcass weight (CW) were positively correlated with the gEBV of carcass weight (gCW). The DEP did not affect ADG. Neither the gMS nor the DEP affected the MS and beef quality grade. The intramuscular fat (IMF) content in the longissimus thoracis (LT) tended to be higher (P = 0.08) in the high-gMS groups than in the low-gMS groups. The mRNA levels of lipogenic acetyl-CoA carboxylase and fatty acid binding protein 4 genes in the LT were higher (P < 0.05) in the high-gMS group than in the low-gMS group. Overall, the IMF content tended to be affected by the gMS, and the genetic potential (i.e., gMS) was associated with the functional activity of lipogenic gene expression. The gCW was associated with the measured BW and CW. The results demonstrated that the gMS and the gCW may be used as early prediction indexes for meat quality and growth potential of beef cattle.  相似文献   

2.
Reaction ofKlebsiella aerogenes urease with diethylpyrocarbonate (DEP) led to a pseudo-first-order loss of enzyme activity by a reaction that exhibited saturation kinetics. The rate of urease inactivation by DEP decreased in the presence of active site ligands (urea, phosphate, and boric acid), consistent with the essential reactive residue being located proximal to the catalytic center. ThepH dependence for the rate of inactivation indicated that the reactive residue possessed apK a of 6.5, identical to that of a group that must be deprotonated for catalysis. Full activity was restored when the inactivated enzyme was treated with hydroxylamine, compatible with histidinyl or tyrosinyl reactivity. Spectrophotometric studies were consistent with DEP derivatization of 12 mol of histidine/mol of native enzyme. In the presence of active site ligands, however, approximately 4 mol of histidine/mol of protein were protected from reaction. Each protein molecule is known to possess two catalytic units; hence, we propose that urease possesses at least one essential histidine per catalytic unit.  相似文献   

3.
Modification of maize δ-aminolevulinic acid dehydratase (ALAD) by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation showed saturation kinetics with a half inactivation time at saturating DEP equal to 0.3 min and KDEP  0.3 mM. Substrate δ-aminolevulinic acid (ALA) and competitive inhibitor levulinic acid protected against inactivation, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.8 M hydroxylamine. Most of the activity lost by DEP treatment could be restored after treatment with 0.8 M hydroxylamine. The results suggest that DEP modifies 7.4 residues/mole of the enzyme. These histidine residues are essential for catalysis by ALAD.  相似文献   

4.
α-Trifluoromethylhistamine (1), proposed as a suicide inhibitor of histidine decarboxylase, has been prepared from β-trifluoromethyl-β-alanine. Histidine decarboxylase from hamster placenta is inhibited in a time-dependent manner by 1; however, the adduct formed between inhibitor and enzyme is labile. 1 inhibits stomach histidine decarboxylase activity in vivo in rats, but has no antisecretory effect in the pyloric-ligated stomach of the mouse.  相似文献   

5.
《Phytochemistry》1987,26(7):1859-1862
Modification of maize leaf NADP-malic enzyme by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation followed pseudo-first-order reaction kinetics. The inactivation of the enzyme showed saturation kinetics with a half inactivation time, at saturating DEP, equal to 0.15 min and KDEP = 20 mM. The rate of inactivation was faster at 25° as compared to 0° (t0.5 0.75 min at 25° as against 5.6 min at 4° at 5 mM DEP). The enzyme was partially protected against DEP inactivation by NADP and complete protection was seen in the presence of NADP + Mg2+ + malate or its analogues, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.25 M NH2OH and almost complete recovery of the enzyme activity was also observed. The results suggest that DEP modifies 3.0 residues per subunit and of these at least two residue per subunit can be modified without loss of activity in the presence of substrate. Modification of about one histidine residue is correlated with the loss of enzyme activity.  相似文献   

6.
The pH dependence of proton uptake upon binding of NADH to porcine heart mitochondrial malate dehydrogenase (l-malate: NAD+ oxidoreductase, EC 1.1.1.37) has been investigated. The enzyme has been shown to exhibit a pH-dependent uptake of protons upon binding NADH at pH values from 6.0 to 8.5. Enzyme in which one histidine residue has been modified per subunit by the reagent iodoacetamide (E. M. Gregory, M. S. Rohrbach, and J. H. Harrison, 1971, Biochim. Biophys. Acta253, 489–497) was used to establish that this specific histidine residue was responsible for the uptake of a proton upon binding of NADH to the native enzyme. It has also been established that while there is no enhancement of the nucleotide fluorescence upon addition of NADH to the iodoacetamide-modified enzyme, NADH is nevertheless binding to the modified enzyme with the same stoichiometry as with native enzyme. The data are discussed in relation to the involvement of the essential histidine residue in the catalytic mechanism of “histidine dehydrogenases” recently proposed by Lodola et al. (A. Lodola, D. M. Parker, R. Jeck, and J. J. Holbrook, 1978, Biochem. J.173, 597–605) and the catalytic mechanism of “malate dehydrogenases” recently proposed by L. H. Bernstein and J. Everse (1978, J. Biol. Chem.253, 8702–8707).  相似文献   

7.
Reaction ofKlebsiella aerogenes urease with diethylpyrocarbonate (DEP) led to a pseudo-first-order loss of enzyme activity by a reaction that exhibited saturation kinetics. The rate of urease inactivation by DEP decreased in the presence of active site ligands (urea, phosphate, and boric acid), consistent with the essential reactive residue being located proximal to the catalytic center. ThepH dependence for the rate of inactivation indicated that the reactive residue possessed apK a of 6.5, identical to that of a group that must be deprotonated for catalysis. Full activity was restored when the inactivated enzyme was treated with hydroxylamine, compatible with histidinyl or tyrosinyl reactivity. Spectrophotometric studies were consistent with DEP derivatization of 12 mol of histidine/mol of native enzyme. In the presence of active site ligands, however, approximately 4 mol of histidine/mol of protein were protected from reaction. Each protein molecule is known to possess two catalytic units; hence, we propose that urease possesses at least one essential histidine per catalytic unit.  相似文献   

8.
When equimolar ratios of mesyl chloride and methyl 2,6-di-O-mesyl-α-D-glucopyranoside were allowed to react in pyridine and the product resolved by preparative t.l.c., the 2,6-di-, 2,3,6-tri-, 2,4,6-tri-, and 2,3,4,6-tetra-mesyl esters were obtained in (0.5–0.6):1:(4–5):(1-2-1.4) molar ratio. Benzoylation of either the isolated 2,4,6-tri-O-mesyl ester or, more conveniently, the mixture from monomesylation gave the crystalline methyl 3-O-benzoyl-2,4,6-triO-mesyl-α-D-glucopyranoside (8). As both of these trimesyl esters (7 and 8) are unreported, isolation of the benzoate established the 2,4,6-ester arrangement, and the 2,3,6-triester was prepared by standard methods. Treating methyl α-D-glucopyranoside with 3 molar equivalents of mesyl chloride and, subsequently, with 1 molar equivalent of benzoyl chloride, proved a convenient method for preparing the 3-O-benzoyl derivative in moderate yield. Monotosylation of methyl 2,6-di-O mesyl-α-D-glucopyranoside was not so definitive as mesylation, but a molar ratio of 1:2.8 for the 3-O-tosyl:4-O-tosyl product was derived from n.m.r. data. This work, when combined with literature reports, establishes that, in methyl α-D-glucopyranoside, the reactivity toward sulfonylation is 6-OH>2-OH>4-OH>3-OH.  相似文献   

9.
Whereas oxidation of 1,2,4-trithiolane (1) with 1 molar equiv. of m-chloroperbenzoic acid (mCPBA) yielded 1,2,4-trithiolane 4-oxide (3) and a small amount of 1,2,4-trithiolane 1-oxide (2), the reaction with 2.5 molar equiv. of mCPBA afforded exclusively 1,2,4-trithiolane 1,4-dioxide (trans-7). The oxidation of 3,3,5,5-tetramethyl-1,2,4-trithiolane (4) with peroxyacetic acid (1 molar equiv. H2O2/AcOH) gave a mixture of regioisomeric 3,3,5,5-tetramethyl-1,2,4-trithiolane 4-oxide (6) as a major product and only traces of 1-oxide 5. Using 2.5 molar equiv. of peroxyacetic acid in reaction with 4 a mixture of both stereoisomers of 3,3,5,5-tetramethyl-1,2,4-trithiolane 1,4-dioxides cis-8 and trans-8 was isolated. Furthermore, 4 was oxidized to 3,3,5,5-tetramethyl-1,2,4-trithiolane 1,1,4,4-tetraoxide (9) using 6 molar equiv. of peroxyacetic acid. The molecular structures of 3, trans-7, trans-8 and 9 were unambiguously established by X-ray structure analysis. Compounds 1-4, trans-7, trans-8 and 9 were investigated by Raman spectroscopy. Ab initio calculations were used to obtain the optimized geometries and the vibrational wavenumbers of the title compounds. The vibrational assignment was accomplished by using the calculated harmonic wavenumbers and their Raman intensities. The calculated values of both structural parameters and the vibrational modes fitted in with experimental data. The spectroscopic changes observed in the spectra were correlated with the structural parameters in order to gain information about the influence of the oxidation on the molecule structure. The experimental data indicated, that in comparison with starting 1,2,4-trithiolanes 1 and 4 their oxidized derivatives showed remarkable shortening of the S-S bonds.  相似文献   

10.
The assignment of two histidine proton resonances in the proton NMR spectrum of ribonuclease A has been made by forming a paramagnetic complex between pentaammineruthenium(III) and the N-3 nitrogen of a single histidine residue. Reaction of chloropentaammineruthenium(III)dichloride with ribonuclease A in 0.1 m Tris-HCl, pH 7.0, 25°C yields a variety of products in which various histidine residues have been labeled. Cation-exchange chromatography affords the isolation of a specific derivative, labeled at a single histidine residue, that retains 66% of the activity toward the hydrolysis of 2′,3′-cyclic CMP. The site of labeling was determined by peptide mapping to be histidine 105. The binding of ruthenium results in the disappearance of both a histidine C-2 and a C-4 proton resonance from the downfield region of the proton NMR spectrum, as expected from model compound studies. The assignment of these two resonances to histidine 105 is in agreement with a previous assignment (J. L. Markley, 1975, Biochemistry, 14, 3546–3554), thereby demonstrating the potential utility of this ruthenium reagent in the assignment of histidine resonances in the proton NMR spectra of other proteins.  相似文献   

11.
Protein sources from cereals are used in broiler diets, usually in order to reduce feeding costs. However, their efficient use in poultry diets is limited by the level of fiber whose compounds are resistant to digestion in the small intestine; due to this sugars are not digested by endogenous poultry enzymes. The aim of this study was to determine the effect of multi-carbohydrase (MC) and phytase (Phy) on the total retention of nutrients, retention of apparent metabolizable energy corrected for nitrogen (AMEN) (trial 1) and apparent and standardized ileal digestibility of amino acids (trial 2) of rice bran (RB). A total of 245-day-old male broilers (Cobb 500) was distributed at 21-day-old in a completely randomized design in a 2 × 2 + 1 (0 and 200 mg/kg MC; 0 and 50 mg/kg Phy, and basal diet – BD) factorial arrangement of treatments, to give seven replicates and seven birds per replicate. The BD based on corn (trial 1) and cornstarch and casein (trial 2) was used only to determine the coefficients of retention of nutrients and energy, and coefficients of digestibility of amino acids of the RB. The test diets were made by mixing BD and RB 7 : 3 wt/wt basis. There was interaction (P<0.05) between MC × Phy for DM, nitrogen and AMEN, retention and no interaction (P>0.05) for ash, calcium, phosphorous and NDF was observed. Enzymes interacted (P<0.05) on standardized ileal digestibility of arginine, histidine, leucine, methionine, phenylalanine, threonine, valine, aspartic acid, glutamic acid, proline and serine. Dietary combination of MC and Phy resulted in higher (P<0.05) standardized digestibility of arginine, histidine, methionine and threonine relative to single enzyme supplementation or control diet without enzymes. Enzyme isolated inclusions in the diets improved (P<0.05) standardized digestibility of methionine. The supplementation of carbohydrases and Phy in RB will improve the nitrogen, energy and amino acids utilization for broiler chickens.  相似文献   

12.
When yeast alcohol dehydrogenase (YADH) was incubated with one or two molar equivalents of the photolabile reagent p-azidophenacyl iodoacetate (1), 10–15% of the enzymatic activity was lost per mole of inhibitor incorporated, a result which suggests 1 may be modifying in a cooperative process both the Cys-43 and the Cys-153 groups found at each active site of the enzyme. YADH incorporated a maximum of 5.6 mol of 1 per mole of enzyme. When YADH was first carboxymethylated and then allowed to react with an excess of 1, 3.2–3.6 mol of 1 were incorporated into the enzyme with a corresponding loss of 4.0 mol of free sulfhydryl groups in the enzyme. Carboxymethylated YADH was reacted with one molar equivalent of 14C-1 and then was treated sequentially with hydroxylamine and pepsin. Cellulose phosphate chromatography of this peptic digest gave one major radioactive peak eluting in the region where peptic peptides of YADH known to be modified at the Cys-153 are found to elute. When carboxymethylated YADH was treated with one molar equivalent of 1 and then photolyzed, at least 18% of the 1 residues became covalently bound to a second site in the enzyme. This finding establishes that 1 is a useful reagent for investigating the three-dimensional structure of the active site of YADH. Furthermore, 1 should be suitable for investigations into a variety of biological systems.  相似文献   

13.
The crystal structure of Aspergillus oryzae carbonic anhydrase (AoCA) was determined at 2.7 Å resolution and it revealed a dimer, which only has precedents in the α class in two membrane and cancer-associated enzymes. α carbonic anhydrases are underrepresented in fungi compared to the β class, this being the first structural representative. The overall fold and zinc binding site resemble other well studied carbonic anhydrases. A major difference is that the histidine, thought to be the major proton shuttle residue in most mammalian enzymes, is replaced by a phenylalanine in AoCA. This finding poses intriguing questions as to the biological functions of fungal α carbonic anhydrases, which are promising candidates for biotechnological applications.Structured summaryAoCA binds to AoCA by molecular sieving (View interaction)AoCA binds to AoCA X-ray crystallography (View interaction)  相似文献   

14.
《Carbohydrate research》1986,150(1):173-185
Several 2-O-benzoyl-4,6-di-O-benzyl-3-O-R-α-d-galactopyranosyl chlorides, designed as general precursors of β-linked, interior d-galactopyranosyl residues in oligosaccharides, were tested in a sequential synthesis of the galactotriose β-d-Galp-(1→3)-β-d-Galp-(1→3)-d-Gal (19). The chlorides having R = tetrahydro-2-pyranyl and tert-butyldimethylsilyl gave excellent results whereas those having = 3-benzoylpropionyl and chloroacetyl were unsatisfactory. An activated disaccharide block (17), having R = 2,3-di-O-benzoyl-4,6-di-O-benzyl-β-d-galactopyranosyl, was also prepared and tested as a glycosyl donor. The coupling of 17 to 1-propenyl 2-O-benzoyl-4,6-di-O-benzyl-α-d-galactopyranoside (14), in the molar ratio 1.13:1, gave 64% of a trisaccharide derivative (18) that could be converted into 19. This latter synthesis of 19 is efficient because all three galactose units are derived from 14 or its immediate precursor.  相似文献   

15.
Goniothalamin oxide (1) is a styryl lactone which was isolated from bark and leaves of several Goniothalamus species. This natural product has some interesting biological properties such as larvicidal and tripanocidal activities. However, no studies on the antiproliferative profile of goniothalamin oxide (1) and its stereoisomers have been reported yet. Here, goniothalamin epoxide (1), isogoniothalamin epoxide (2) and their enantiomers were prepared via epoxidation of (R)-and (S)-goniothalamin (4). A 3:2 molar ratio in favor of goniothalamin oxide (1) and ent-1 was observed from (R)- and (S)-4, respectively, when 3-chloroperbenzoic acid (mCPBA) was employed while an increase to 6:1 molar ratio was achieved with (S,S)-Jacobsen’s catalyst. Antiproliferative activity of these epoxides revealed that ent-isogoniothalamin oxide (ent-2) was the most active against the eight cancer cell lines studied. These results indicate that 6S, 7R and 8R absolute configurations are beneficial for the activity of these epoxides.  相似文献   

16.
It had previously been reported (B. Krzysik, J. P. Vergnes, and I. R. McManus (1971) Arch. Biochem. Biophys., 146, 34–45) that prior to day 11 of embryonic life chick skeletal muscle actin contained little or no 3-methylhistidine, and that between Day 11 and 18, the degree of actin histidine methylation increased until it leveled off at 1 mol of 3-methylhistidine/mol actin. This is the value seen in adult muscle and nonmuscle actins so far analyzed. To determine whether this delayed onset of actin methylation occurred simultaneously throughout the organism or differed from tissue to tissue, the 3-methylhistidine content of cardiac muscle actin from Day 2 of embryonic life to hatching and of brain actin at Days 9, 11, and 14 were analyzed. These results, obtained by analyzing unlabeled actin samples as well as samples labeled in vivo with [3H]histidine, showed that at all stages, 1 mol of 3-methylhistidine was present per mol of actin. When skeletal muscle samples obtained from Day 11 to 18 embryos were analyzed 1 mol of 3-methyl histidine/mol of actin was observed. Thus, in the chick embryo, contrary to those reports published earlier, it was found that actin histidine methylation is not under developmental control.  相似文献   

17.
A. Martínez 《Amino acids》1995,9(3):285-292
Summary Recombinant human tyrosine hydroxylase isozyme 1 (hTH1) shows a time- and concentration-dependent loss of catalytic activity when incubated with diethylpyrocarbonate (DEP) after reconstitution with Fe(II). The inactivation follows pseudo-first order kinetics with a second order rate constant of 300 M–1 min–1 at pH 6.8 and 20°C and is partially reversed by hydroxylamine. The difference absorption spectrum of the DEP-modified vs native enzyme shows a peak at 244 nm, characteristic of mono-N-carbethoxy-histidine. Up to five histidine residues are modified per enzyme subunit by a five-fold excess of the reagent, and two of them are protected from inactivation by the active site inhibitor dopamine. However, derivatization of only one residue appears to be responsible for the inactivation. Thus, no inactivation by DEP was found when the apoenzyme was preincubated with this reagent prior to its reconstitution with Fe(II), modifying four histidine residues.Abbreviations BH4 (6R)-l-erythro-tetrahydrobiopterin - DEP diethylpyrocarbonate - DOPA 3,4-dihydroxyphenylalanine - hTH1 human tyrosine hydroxylase isoenzyme 1 - apo-hTH1 apoenzyme of hTH1 - Fe(II)-hTH1 holoenzyme (iron reconstituted) of hTH1 - dopamine-Fe(III)-hTH1 holoenzyme of hTH1 with dopamine bound - TH tyrosine hydroxylase  相似文献   

18.
Diesel exhaust particles (DEP) are reactive oxygen species (ROS)-inducing toxic agents that damage lungs. Thioredoxin-1 (Trx-1) is a thiol protein with antioxidant and redox-regulating effects. In this study, we demonstrate that Trx-1 scavenges ROS generated by DEP and attenuates the lung injury. Intratracheal instillation of DEP resulted in the generation of more hydroxyl radicals in control mice than in human Trx-1 (hTrx-1)-transgenic mice as measured by noninvasive L-band in vivo electron spin resonance. DEP caused acute lung damage with massive infiltration of inflammatory cells in control mice, but much less damage in hTrx-1-transgenic mice. The hTrx-1 transgene protected the mice against DEP toxicity. To investigate further the molecular mechanism of the protective role of Trx-1 against DEP-induced lung injury, we used hTrx-1-transfected L-929 cells and recombinant hTrx-1 (rhTrx-1)-pretreated A-549 cells. DEP-induced ROS generation was suppressed by hTrx-1 transfection or pretreatment with rhTrx-1. Endogenous Trx-1 expression was induced by DEP in control cells. The downregulation of Akt phosphorylation by DEP resulted in apoptosis, which was prevented by Trx-1. Moreover, an Akt inhibitor canceled this protective effect of Trx-1. Collectively, the results suggest that Trx-1 exerts antioxidant effects in vivo and in vitro and that this plays a role in protection against DEP-induced lung damage by regulating Akt-mediated antiapoptotic signaling.  相似文献   

19.
A series of novel alkyl amide functionalized trifluoromethyl substituted pyrazolo[3,4-b]pyridine derivatives 5, 6 and 7 were prepared starting from 6-phenyl-4-(trifluoromethyl)-1H-pyrazolo[3,4-b]pyridin-3-amine 3 via selective N-alkylation, followed by reaction with different primary aliphatic amines, cyclic secondary amines or l-amino acids under different set of conditions. All the synthesized compounds 5, 6 and 7 were screened for anticancer activity against four cancer cell lines such as A549—Lung cancer (CCL-185), MCF7—Breast cancer (HTB-22), DU145—Prostate cancer (HTB-81) and HeLa—Cervical cancer (CCL-2). The compounds 5i and 6e are found to have promising bioactivity at micro molar concentration.  相似文献   

20.
Reaction of α-chymotrypsin with o-[35S]hydroxy-α-toluenesulfonic acid sultone (I) at pH 7 produces an intermediate which substantially decomposes over a period of 24 hr at pH 3 as determined by gel chromatography. Isolation of the intermediate at pH 3 followed by denaturation in urea, reduction of disulfide bonds, and SDS-urea gel electrophoresis resulted in separation of the three peptides which compose the enzyme. Radioactivity (35S) was associated with the peptide which contains serine 195 and not with the peptide containing histidine 57. These results indicate that a covalent linkage is established between sultone I and α-chymotrypsin, presumably at serine 195.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号