首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosyltransferases are involved in biosynthesis of both protein-bound and non-bound glycans that have multiple and important biological functions in all species. A variety of methods for assaying glycosyltransferase activity have been developed driven by the specific interests and type of information required by researchers. In this work, a novel colorimetric assay for the glycosyltransferase-catalyzed reaction was established. Compared with measuring the newly formed product, which might not exhibit visible absorption, the unreacted acceptor could be readily detected by measuring the visible absorption of the hydrolysis product. In the assay, 4-nitrophenyl-β-D-glycoside (glycosyl-β-pNP) is used as the glycosyl acceptor, which can be hydrolyzed by a special exoglycosidase to release the p-nitrophenol before glycosylation reactions. Absorbance change of the p-nitrophenolate corresponds to unreacted glycosyl acceptor that accompanied the glycosyl transfer. The assay is demonstrated to be useful in the initial characterization of recombinant glycosyltransferases for their kinetic parameters, optimal metal cofactor, and pH value. It provides a simple, sensitive, and quantitative method for assessing glycosyltransferase activity and is thus expected to have broad applications including automated high-throughput screening.  相似文献   

2.
3.
A sensitive gas-chromatographic method for quantitative analysis of verapamil in human plasma is described. The method involves a single extraction procedure, followed by separation on a capillary column and detection with a nitrogen-phosphorus detector. The detection limit, based upon an assayed plasma volume of 0.5 ml, is 2 ng/ml. The standard curve is linear in the concentration range of 2 to 1000 ng/ml. The recovery of verapamil by pentane-isopropanol extraction was found to be 95%. Zipeprol is used as the internal standard. No interference from drugs needed for the associated cancer therapy has been found. Serum verapamil concentrations are determined by this method in fourteen cancer patients undergoing treatment with adriamycin.  相似文献   

4.
5.
Mandelate racemase (EC 5.1.2.2) catalyzes the interconversion of the two stereoisomers of mandelic acid. A fixed-time assay for the quantification of mandelate racemase activity has been developed. The assay involves enzymatic conversion of R-mandelate to S-mandelate (or the reverse reaction) followed by separation and detection of the substrate and product using isocratic reversed-phase high-performance liquid chromatography on a Sumichiral OA-6100 column and absorbance detection. This method offers an economical and efficient alternative to the existing circular dichroism-based and coupled assays.  相似文献   

6.
A rapid procedure which is based on combined ion-exchange chromatography and solubility was established for determination of the activity of ganglioside synthases and cerebroside sulfotransferase. The procedure consists of selective elution of radiolabeled reaction products (acidic glycolipids) freed from labeled precursors and breakdown products on a DEAE-Sephadex column and of direct radioassay of the products in the eluate. Monosialogangliosides were eluted from the column with 40 mM ammonium acetate (AcONH4) in methanol, cerebroside sulfate with 90 mM AcONH4 in methanol, and disialogangliosides with 40 mM AcONH4 in isopropanol/n-hexane/water (55/20/19, v/v/v). The established procedure is simple, reproducible, and economical. Using rat Golgi membrane as enzyme source the recovery rate of the products was over 95%.  相似文献   

7.
8.
9.
10.
An automated high-performance liquid chromatographic method for the assay of 3',5'-cyclic AMP was developed using octylsilica. Total analysis time was 10.1 min, with cAMP eluting at 3 min. As little as 10 pmol of cyclic AMP could be detected by absorption at 260 nm. Peak height and area were linearly related to cyclic AMP concentration over at least two orders of magnitude. The analytical procedure gave good results in the assay of crude microsomal preparations of adenylate cyclase from both bovine brain and sea urchin eggs. The method was used to demonstrate that sea urchin adenylate cyclase is a Ca2+-activated enzyme.  相似文献   

11.
12.
An assay for measuring dihydroorotase activity was devised. Radiolabeled substrate and product were separated by high-performance liquid chromatography using a reverse-phase column with ion-pairing, and the radioactivity was quantitated by flow detection.  相似文献   

13.
Anumula KR 《Glycobiology》2012,22(7):912-917
Assays were developed using the unique labeling chemistry of 2-aminobenzoic acid (2AA; anthranilic acid, AA) for measuring activities of both β1-4 galactosyltransferase (GalT-1) and α2-6 sialyltransferase (ST-6) by high-performance liquid chromatography (HPLC) with fluorescence detection (Anumula KR. 2006. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 350:1-23). N-Acetylglucosamine (GlcNAc) and N-acetyllactosamine were used as acceptors and uridine diphosphate (UDP)-galactose and cytidine monophosphate (CMP)-N-acetylneuraminic acid (NANA) as donors for GalT-1 and ST-6, respectively. Enzymatic products were labeled in situ with AA and were separated from the substrates on TSKgel Amide 80 column using normal-phase conditions. Enzyme units were determined from the peak areas by comparison with the concomitantly derivatized standards Gal-β1-4GlcNAc and NANA-α2-6 Gal-β1-4GlcNAc. Linearity (time and enzyme concentration), precision (intra- and interassay) and reproducibility for the assays were established. The assays were found to be useful in monitoring the enzyme activities during isolation and purification. The assays were highly sensitive and performed equal to or better than the traditional radioactive sugar-based measurements. The assay format can also be used for measuring the activity of other transferases, provided that the carbohydrate acceptors contain a reducing end for labeling. An assay for glycoprotein acceptors was developed using IgG. A short HPLC profiling method was developed for the separation of IgG glycans (biantennary G0, G1, G2, mono- and disialylated), which facilitated the determination of GalT-1 and ST-6 activities in a rapid manner. Furthermore, this profiling method should prove useful for monitoring the changes in IgG glycans in clinical settings.  相似文献   

14.
15.
16.
A new method is presented for the detection of phentolamine by high performance liquid chromatography with electrochemical detection. The electrochemical detector was used in the oxidative mode at +900 mV potential versus Ag/AgCl reference. The on-column detection limit for phentolamine using this method was 3 ng, and detector response was linear for 3-1000 ng injected on column. The coefficient of variation for replicate injections was 2.4%. The measurement of phentolamine in biological samples was accomplished using yohimbime as the internal standard; retention time for yohimbine was 3.0 min while phentolamine eluted at 4.75 min. Biological samples were buffered to pH 9.2 and extracted with diethyl ether, followed by back extraction into 0.1 N HCl. The extraction efficiency for this method was 99.4% for phentolamine in serum and 59.3% in liver tissue. The detection limit for phentolamine was 5 ng/ml for 1.0-ml serum samples, and was 10 ng/ml for 1.0-ml liver homogenate samples. The disappearance of phentolamine from serum and liver after administration of a single ip dose of phentolamine to mice was determined using this method. Absorption from the ip route was rapid, with peak phentolamine concentrations achieved in 15 min or less. The elimination half-life of phentolamine in serum was approximately 50 min and was paralleled by disappearance of phentolamine in the liver.  相似文献   

17.
18.
Glycosyltransferases catalyze transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Identification of selective modulators of glycosyltransferases is important both to provide new tools for investigating pathophysiological roles of glycosylation reactions in cells and tissues, and as new leads in drug discovery. Here we describe a universal enzyme-coupled fluorescence assay for glycosyltransferases, based on quantification of nucleotides produced in the glycosyl transfer reaction. GDP, UDP, and CMP are phosphorylated with nucleotide kinase in the presence of excess ATP, generating ADP. Via coupled enzyme reactions involving ADP-hexokinase, glucose-6-phosphate dehydrogenase, and diaphorase, the ADP is utilized for conversion of resazurin to resorufin, which is determined by fluorescence measurement. The method was validated by comparison with an HPLC method, and employed to screen the LOPAC1280 library for inhibitors in a 384-well plate format. The assay performed well, with a Z′-factor of 0.80. We identified 12 hits for human galactosyltransferase B4GALT1 after elimination of false positives that inhibited the enzyme-coupled assay system. The assay components are all commercially available and the reagent cost is only 2 to 10 US cents per well. This method is suitable for low-cost, high-throughput assay of various glycosyltransferases and screening of glycosyltransferase modulators.  相似文献   

19.
20.
Xylose oligomers, which have a prebiotic effect, have been used as additives to human and animal food. These oligomers are also the primary intermediate in hemicellulose degradation during the pretreatment of biomass. Centrifugal partition chromatography (CPC) was used in this study to separate and purify xylan-derived oligomers from birchwood xylan. The xylan was partially hydrolyzed to achieve varying degrees of polymerization at 130°C using 0.98% aqueous sulfuric acid for 20 min with a 2.5% solid loading. The CPC solvent system consisting of dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and water in a 1:6:3 volumetric ratio was used because of its ability to dissolve xylose oligomers of different degrees of polymerization. The CPC was operated in the ascending mode with the water- and DMSO-rich bottom phase acting as the stationary phase, while the THF-rich top phase was the eluent. This paper delineates a method for the production and purification of xylose monomer and xylose oligomers (up to xylopentaose) using CPC. The amount and purity of compounds collected from the CPC fractionation based on 1 g of birchwood xylan were 25.26 mg of xylose at 91.86% purity, 10.71 mg of xylobiose at 85.07% purity, 4.15 mg of xylotriose at 54.71% purity, 5.03 mg of xylotetraose at 38.33% purity and 3.31 mg of xylopentaose at 30.43% purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号