首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preincubation of Swiss 3T3 cells or human fibroblasts with purified platelet-derived growth factor (PDGF) at 4 degrees C or 37 degrees C rapidly inhibits subsequent binding of 125I-epidermal growth factor (125I-EGF). The effect does not result from competition by PDGF for binding to the EGF receptor since (a) very low concentrations of PDGF are effective, (b) cells with EGF receptors but no PDGF receptors are not affected, and (c) the inhibition persists even if the bound PDGF is eluted before incubating the cells with 125I-EGF. PDGF does not affect 125I-insulin binding nor does EGF affect 125I-PDGF binding under these conditions. Endothelial cell-derived growth factor also competes for binding to PDGF receptors and inhibits 125I-EGF binding. The inhibition demonstrated by PDGF seems to result from an increase in the Kd for 125I-EGF binding with no change in the number of EGF receptors.  相似文献   

2.
Summary The mitogenic and differentiation-inducing activities of epidermal growth factor (EGF) in epithelial tissues have been well described. Since non-mitogenic effects of EGF, especially in mesenchymal tissues such as smooth muscle are not well-known (Nanney et al. 1984), we have examined EGF-binding and receptors in smooth muscle from many sites. Specific EGF binding sites were detected by incubating small pieces of tissue with 125I-EGF; immunoreactive EGF receptors were detected by immunohistochemistry. In-situ localization of 125I-EGF binding sites and immunoreactive EGF receptors of smooth muscle cells in intact mammalian tissues were identical using either 125I-EGF autoradiography or anti-EGF receptor antibody in an immunoperoxidase method. Cultured rat aortic smooth muscle also contained specific EGF receptors as detected by their biological response to EGF-binding and internalization of 125I-EGF, as well as EGF-stimulated phosphorylation of a 170K protein. The presence of EGF receptors in a well-differentiated smooth muscle cell indicates that EGF may play a physiological, but non-mitogenic role in mammalian tissues in vivo.  相似文献   

3.
125I-labelled epidermal growth factor (125I-EGF) and 125I-labelled insulin-like growth factor-I (125I-IGF-I) bound to trophoderm cells from pig blastocysts obtained on days 15-19 of pregnancy. Specific binding was detected on freshly isolated cell suspensions and on cells cultured for several days. The binding of 125I-EGF was inhibited by increasing concentrations of EGF, but not by various other growth factors and hormones. Chemical cross-linking of 125I-EGF to its receptors using disuccinimidyl suberate (DSS) revealed a radiolabelled band of relative molecular mass 160,000, similar to that identified as the EGF receptor in other cell types. The binding of 125I-IGF-I was inhibited by both IGF-I and insulin, indicating that the receptors were either type I IGF receptors or insulin receptors. Cross-linking of 125I-IGF-I to serum-free supernatants from trophoderm cultures showed that the cells secreted an IGF-binding protein, giving a complex of relative molecular mass about 45,000. The presence of receptors for EGF and IGF/insulin suggests that these factors could be involved in regulating the growth and development of the early blastocyst.  相似文献   

4.
When normal human fibroblasts are brought to a steady state with 125I-labeled epidermal growth factor (125I-EGF), greater than 90% of the radioactivity is intracellular. We investigated this material to determine whether the 125I-EGF is intact or degraded. Our results show that 125I-EGF is rapidly processed after internalization and can be resolved into four peaks by native gel electrophoresis. These different forms were isolated and tested for their ability to bind to cell-surface EGF receptors. The first processed form was fully capable of binding to EGF receptors, but the second processed form could not. The third form was a collection of small degradation products. We calculated that at steady state about 60% of internalized "125I-EGF" was in a form still able to bind to EGF receptors. We then investigated the ability of different reported inhibitors of EGF "degradation" to block the processing of EGF. Although inhibitors of cathepsin B (leupeptin, antipain, N alpha-p-tosyl-L-lysine chloromethyl ketone, and chymostatin) were able to inhibit the release of monoiodotyrosine from treated cells in a time- and concentration-dependent manner, they had little effect on the processing step that apparently inactivates 125I-EGF. In contrast, agents that raised intravesicular pH, such as methylamine and monensin, inhibited the initial steps in EGF processing as well as the later steps. Low temperatures inhibited the transfer of 125I-EGF to the lysosomes and inhibited the conversion of EGF to a nonbindable form, but had little effect on the initial processing. We conclude that the intracellular processing of EGF is a multistep process that is initiated prior to lysosomal fusion, involves cathepsin B activity, and requires an acidic pH. In addition, many of the protease inhibitors that have been utilized to investigate the role of EGF degradation in mitogenesis do not block the conversion of EGF to a form that is apparently unable to interact with its receptor.  相似文献   

5.
Solubilization of membrane receptor for epidermal growth factor.   总被引:7,自引:0,他引:7  
G Carpenter 《Life sciences》1979,24(18):1691-1697
The membrane receptor for epidermal growth factor (EGF) has been solubilized from A-431 tumor cells using Triton X-100. Operational criteria used to define solubilization include failure of the binding activity to be pelleted after centrifugation at 90,000 x g for 1.5 hrs and the requirement for polyethylene glycol precipitation to detect 125I-EGF: receptor complexes on membrane filters. Properties of the solubilized EGF are characterized and compared to the properties of the particulate receptor. The specific binding capacity of the solubilized EGF receptor was 8.0 picomoles 125I-EGF bound per mg protein--approximately 60% of the binding capacity of particulate receptor preparations. Also, solubilization of the EGF receptor resulted in a 10-fold decrease in the affinity of the receptor for 125I-EGF.  相似文献   

6.
Cells transformed by murine sarcoma viruses (MSV) produce and release into their tissue culture media several polypeptide growth stimulating factors. One of these has been partially purified using Bio-Gel P-60 column chromatography followed by DEAE-cellulose chromatography. This growth factor was assigned the name sarcoma growth factor (SGF), and is here shown to require the epidermal growth factor (EGF) receptor in order to function as a growth factor. DEAE-cellulose chromatography yielded a product that was several-fold purer than the material present in the Bio-Gel P-60 column pool II. The biologically active material from the DEAE-cellulose column, when labeled with 125I, showed specific binding to EGF membrane receptors. The specific binding could be prevented with the addition of either unlabeled EGF or SGF. Both radiolabeled SGF and EGF will bind to live or fixed cells. We were able to bind 125I-SGF as well as 125I-EGF to fixed cells and elute the bound material from fixed receptors. The eluted SGF showed a greater than 25-fold increase in specific binding. The biological activities of EGF and SGF could be bound to and eluted from fixed receptors. The eluted SGF showed a greater than 25-fold increase in specific binding. The biological activities of EGF and SGF could be bound to and eluted from fixed cells. A 3T3 clone lacking EGF receptors was unable to respond to either EGF or SGF, whereas it responded well to serum and several other purified growth factors. The SGF isolated using DEAE-cellulose chromatography was unable to compete in a radioimmune assay using 125I-EGF and antibody to purified mouse submaxillary gland EGF; it also was not precipitated by anti-EGF antibody. From these studies it appears that the SGF produced and released by these MSV-transformed cells combines with and requires the EGF receptor in order to exert its biological effects. The peptide, however, is antigenically distinct from mouse submaxillary gland EGF.  相似文献   

7.
Epidermal Growth Factor (EGF), a small polypeptide which acts as a mitogen for many cell types, has previously been shown to bind to a specific plasma membrane receptor on 3T3 cells. If 125I-EGF is bound to 3T3 cells for one hour at 4°C, it remains predominantly associated with the plasma membrane-containing fractions obtained by subjecting cell supernatants to equilibrium sedimentation on sucrose gradients. When binding is followed by a 10-minute incubation at 37°C, over 50% of the 125I-EGF is associated with two internal membrane-containing peaks having higher densities than the plasma membrane. After one hour at 37°C, over 80% of the 125I-EGF is degraded and removed from the cells. The most rapidly labeled internal peak corresponds in density to brain-coated vesicles (CVs). Antiserum prepared against coated vehicles from brain precipitates the 125I-EGF in this peak. In addition, CVs containing 125I-EGF can be co-purified from 3T3 cells exposed to 125I-EGF, using brain as a carrier. Several lines of evidence suggest that the other 125I-EGF-labeled intracellular peak is 125I-EGF in lysosomes. These results provide kinetic and biochemical evidence for a unidirectional pathway for EGF catabolism by 3T3 cells. EGF first binds to the plasma membrane bound receptors, is then moved to the cytoplasm in CVs, and finally appears in lysosomes, where it is degraded and released from the cells. Ten-millimolar NH4Cl blocks lysosomal hydrolysis of EGF almost completely. Subsequently, EGF internalization is inhibited. This finding suggests that the pathway for EGF internalization and degradation is tightly coupled.  相似文献   

8.
The binding of 125I-epidermal growth factor (EGF) to microsomal membrane preparations from the livers of rats fasted for 72 h or fed control or high carbohydrate diets was examined to determine whether alterations in nutrient intake could affect the EGF receptor system. Fasted rats had 40-50% less membrane binding than did control or carbohydrate-fed rats. Scatchard analysis of the binding data indicated that the decrease in EGF binding in fasted rats was due to a decrease in receptor number with no change in receptor affinity. Cross-linking of 125I-EGF to EGF receptors with disuccinimidyl suberate revealed specific binding of a Mr 170,000 protein, which was diminished by approximately 75% in fasting, and a Mr = 150,000 protein, which accounted for 40-50% of the total labeling in the control and carbohydrate-fed rats and which was relatively unchanged by fasting. The sum of the labeling of the 2 bands was reduced by approximately 40% in fasting and is consistent with the reduction in EGF binding detected by Scatchard analysis. EGF stimulated a 1.5-3-fold increase in 32P incorporation into one major protein of 170 kDa in all 3 groups. Basal and EGF-stimulated autophosphorylation of 170 kDa, when normalized for protein, was 75% lower in membranes from fasted animals, compared to those from control or carbohydrate-fed rats. The comparable reduction of 125I-EGF binding to, and 32P incorporation into, the 170-kDa EGF receptor protein suggested that kinase activity/receptor was unaffected by fasting. Moreover, EGF receptor kinase activity in the 3 groups was comparable for an exogenous substrate, as judged by equal basal and EGF-stimulated phosphorylation of Val5-angiotensin II, when normalized for total EGF-binding capacity. These results suggest that fasting regulates EGF receptor kinase activity primarily by regulation of the number of hepatic EGF receptors. The possibility exists that some in vivo effects of fasting may be mediated by a reduction in EGF receptor levels.  相似文献   

9.
Topography of human placental receptors for epidermal growth factor   总被引:1,自引:0,他引:1  
These studies were undertaken to determine whether term human placental microvillus plasma membranes, which are exposed to maternal blood, and basolateral plasma membranes, which are in close proximity to fetal blood capillaries, contain receptors for epidermal growth factor (EGF). These two highly purified membranes bound 125I-EGF with similar affinity (apparent dissociation constants, 0.07-0.12 nM, but the total number of available receptors was greater in microvillus (8.2 pmol/mg protein) compared to basolateral (4.9 pmol/mg protein) plasma membranes. Detailed characterization of 125I-EGF binding to these membranes revealed numerous similarities as well as differences. The two membranes contained two major (155 and 140 kDa) and at least three minor (115, 175, and 210 kDa) specific 125I-EGF binding proteins. The 115-kDa protein was only found in basolateral plasma membranes. The 155-kDa protein was predominantly labeled in microvillus, whereas the 140-kDa protein was labeled predominantly in basolateral plasma membranes. The addition of protease inhibitors did not alter the multiple 125I-EGF binding proteins pattern found in these membranes. EGF stimulated phosphorylation of 140- and 155-kDa proteins in both microvillus and basolateral plasma membranes. However, the 155-kDa protein was phosphorylated to a greater extent in microvillus, whereas both 140- and 155-kDa proteins were phosphorylated equally in basolateral plasma membranes. Light and electron microscope autoradiographic studies revealed that 125I-EGF preferentially associated with microvillus plasma membranes. The data demonstrates the presence of EGF receptors in outer cell membranes of syncytiotrophoblasts and suggests that maternal EGF may influence syncytiotrophoblast function by binding to receptors in microvillus plasma membranes, while fetal EGF may also influence syncytiotrophoblast function but via receptors in basolateral plasma membranes.  相似文献   

10.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

11.
Incubation of intact rat adipocytes with physiological concentrations of catecholamines inhibits the specific binding of 125I-insulin and 125I-epidermal growth factor (EGF) by 40 to 70%. Affinity labeling of the alpha subunit of the insulin receptor demonstrates that the inhibition of hormone binding is directly reflective of a specific decrease in the degree of receptor occupancy. The stereospecificity and dose dependency of the binding inhibitions are typical of a classic beta 1-adrenergic receptor response with half-maximal inhibition occurring at 10 nM R-(-)-isoproterenol. Specific alpha-adrenergic receptor agonists and beta-adrenergic receptor antagonists have no effect, while beta-adrenergic receptor antagonists block the inhibition of 125I-insulin and 125I-EGF binding to receptors induced by beta-adrenergic receptor agonists. Further, these effects are mimicked by incubation of adipocytes with dibutyryl cyclic AMP or with 3-isobutyl-1-methylxanthine. The beta-adrenergic inhibition of both 125I-insulin and 125I-EGF binding is very rapid, requiring only 10 min of isoproterenol pretreatment at 37 degrees C for a maximal effect. Removal of isoproterenol by washing the cells in the presence of alprenolol leads to complete reversal of these effects. The inhibition of 125I-EGF binding is temperature dependent whereas the inhibition of 125I-insulin binding is relatively insensitive to the temperature of isoproterenol pretreatment. Scatchard analysis of 125I-insulin and 125I-EGF binding demonstrated that the decrease of insulin receptor-binding activity may be due to a decrease in the apparent number of insulin receptors while the inhibition of EGF receptor binding can be accounted for by a decrease in apparent EGF receptor affinity. The decrease in the insulin receptor-binding activity is physiologically expressed as a dose-dependent decrease of insulin responsiveness in the adipocyte with respect to two known responses, stimulation of insulin-like growth factor II receptor binding and activation of the glucose-transport system. These results demonstrate a beta-adrenergic receptor-mediated cyclic AMP-dependent mechanism for the regulation of insulin and EGF receptors in the rat adipocyte.  相似文献   

12.
Highly purified epidermal growth factor (EGF) was iodinated, and the labeled product with the same isoelectric point as underivatized EGF was isolated by isoelectric focusing. When the 125I-labeled EGF was analyzed by reverse-phase chromatography, the resulting profile of 125I activity was much broader than the profile obtained with underivatized EGF. Rechromatography of 125I-EGF fractions indicated that our highly-purified labelled EGF was indeed heterogeneous. Analysis of each HPLC column fraction demonstrated that degradation of EGF had not occurred. The column fractions containing 125I-EGF were pooled into five groups for analysis of cell binding characteristics. Scatchard plot analysis of the five 125I-EGF pools revealed markedly different binding behaviors. In contrast, they had equal potency in stimulating DNA synthesis, within the sensitivity of our assay. Specific activity measurements indicated that the five HPLC pools of 125I-EGF had varying numbers of 125I atoms per EGF molecule. The heterogeneity of the highly purified 125I-EGF and the binding characteristics of the 125I-EGF subfractions pose serious implications for all workers who use iodinated ligands for receptor binding studies.  相似文献   

13.
A radioimmunoassay for human epidermal growth factor receptor   总被引:4,自引:0,他引:4  
The development of a radioimmunoassay (RIA) for the human epidermal growth factor receptor solubilized with nonionic detergents which employs iodinated epidermal growth factor (125I-EGF) as the specific ligand is described. A monoclonal antibody (R1) that binds specifically to human EGF receptors [Waterfield, M. D., et al. (1982) J. Cell Biochem. 20, 149-161] was used to separate solubilized receptors saturated with 125I-EGF from free ligand by absorption to protein A-Sepharose, and the bound radioactivity was determined. The RIA was linear when increasing amounts of solubilized membrane protein were added and, when compared to the standard polyethylene glycol assay, was more reproducible. In addition, the background nonspecific binding obtained in the presence of a hundred-fold excess of unlabeled EGF was less in the RIA. Substitution of normal mouse serum for the monoclonal antibody gave very low nonspecific background ligand binding and avoided the use of large amounts of unlabeled EGF in the assay. Two major classes of binding sites for EGF were observed in membrane preparations from the cervical carcinoma cell line A431 or from normal human placental tissue. These were present in approximately equal amounts, with apparent dissociation constants of 4 X 10(-10) and 4 X 10(-9) M. Upon solubilization with the nonionic detergent Triton X-100, only one class of EGF binding sites was detected in both cases, with a dissociation constant of 3 X 10(-8) M. The RIA can be used to monitor receptor purification and for quantitation of receptor number and affinity in various cell types.  相似文献   

14.
We have devised a rapid and simple protocol for the purification of the plasma membrane from several lines of transformed cultured cells. A431 or KB plasmalemma was purified in 90 min with a two-step centrifugation cycle after selectively inducing microsomal aggregation by the addition of calcium to homogenized cells. Relative specific activity analysis using membrane marker enzymes on the various fractions indicated that the isolated plasmalemma was purified 8-12-fold over the starting homogenate and contained a high density of epidermal growth factor (EGF) receptors. Transmission electron microscopy showed the final membrane suspension consisted of unilamellar vesicles with an average diameter of approximately 100 A. The purified membrane vesicles avidly bound to 125I-EGF and reached equilibrium within 30 min. Microfiltration assays indicated more than 90% of the total binding can be displaced by excess unlabeled ligand. Equilibrium binding analysis showed a single class of high-affinity 125I-EGF binding site, with Kd = 0.14 nM and Bmax = 0.1 pmol/mg of protein for purified KB membrane and Kd = 1.2 nM and Bmax = 5.26 pmol/mg of protein for purified A431 membrane. Gel electrophoresis of 125I-EGF cross-linked to membrane EGF receptors showed a distinct autoradiographic band at 170 kilodaltons, which could be displaced with excessive amounts of unlabeled EGF. Finally, EGF-dependent autophosphorylation of the EGF receptor was clearly demonstrated with the purified membrane preparation. Membrane vesicles purified in this manner can be stored in liquid nitrogen for several months without losing their biological activity.  相似文献   

15.
Protamine sulfate blocked 125I-PDGF binding to its specific physiological receptor on Swiss mouse 3T3 cells. Reduced 125I-PDGF binding in the presence of protamine sulfate correlated directly with a protamine sulfate dose-dependent decrease in the PDGF-dependent incorporation of [3H]-thymidine into 3T3 cells and a decreased PDGF-stimulated tyrosine-specific protein kinase activity in isolated membrane preparations of 3T3 cells. Protamine sulfate blocked 125I-PDGF binding to simian sarcoma virus transformed cells (SSV-NIH 3T3 and SSV-NP1 cells) and to nontransformed cells in a manner qualitatively identical to unlabelled PDGF. In contrast, protamine sulfate enhanced the specific binding of 125I-EGF by increasing the apparent number of EGF receptors on the cell surface. The increase in 125I-EGF receptor binding was not prevented by cycloheximide nor by actinomycin D. Protamine sulfate did not affect 125I-EGF binding to membranes from 3T3 cells or the EGF-stimulated 3T3 cell membrane tyrosine specific protein kinase activity, suggesting that protamine sulfate may have exposed a population of cryptic EGF receptors otherwise not accessible. Protamine sulfate was fractionated into four active fractions by Sephadex G-50 gel filtration columns; the half maximum inhibition concentration of 125I-PDGF binding to 3T3 cells of protamines I and II (MW approximately 11,000 daltons and 7,000 daltons, respectively) is approximately 0.4 microM. Protamine II (MW approximately 4,800 daltons) was equally active (half maximum inhibition concentration approximately 0.4 microM); protamine IV (MW approximately 3,300 daltons) was substantially less active (half maximum inhibition concentration approximately 2.8 microM). These investigations have extended previous observations that protamine sulfate is a potent inhibitor of PDGF binding and establish that protamine sulfate blocks PDGF binding at the physiological receptor, preventing PDGF initiated biological activities. Protamine sulfate can be used as a reagent to separate the influence of PDGF and EGF on cells with high specificity and has been used to demonstrate that the receptors on simian sarcoma virus transformed 3T3 cells qualitatively respond identically to protamine sulfate as to unlabelled PDGF and are likely identical to those on nontransformed 3T3 cells.  相似文献   

16.
Fibroblast-derived growth factor (FDGF), a basic, heat- and acid-stable polypeptide partially purified from the serum-free conditioned medium of BHK cells transformed by simian virus 40, is a potent mitogen for Swiss 3T3 cells and causes a marked reduction in 125I-labeled epidermal growth factor (125I-EGF) binding to these cells. The activity which inhibits EGF binding coelutes with the growth-stimulating activity after gel filtration, ion exchange chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Both cellular responses are elicited by the same range of FDGF concentration in several murine cell types. The inhibition of EGF binding is rapid and results from a decrease in the apparent affinity of cellular receptors for 125I-EGF. FDGF does not affect the rate of cell-mediated 125I-EGF degradation. Several lines of evidence suggest that FDGF does not bind directly to EGF receptor. First, the effect of FDGF is dependent on the temperature of the assay; furthermore, treatment of cells with EGF results in loss of EGF receptors while exposure to FDGF for up to 24 h does not induce "down-regulation" of EGF receptors. Further, in A431 cells which display a large number of specific EGF receptors, 125I-EGF binding is not sensitive to FDGF. Finally, the effect of FDGF on 125I-EGF binding is not observed with isolated plasma membranes. Taken together, these findings suggest that FDGF binds to sites which are separate from EGF receptors. The results show a novel mechanism whereby a growth-promoting factor produced by a tumor cell line can rapidly modulate the affinity of the cellular receptors for EGF in an indirect manner.  相似文献   

17.
Between 60% and 100% of epidermal growth factor (EGF) binding activity was recovered from membranes of the A431 human epidermoid carcinoma cell line treated with solutions containing the nonionic detergent Triton X-100. Approximately half of the recovered binding activity was sedimented at low centrifugal forece and hence was operationally insoluble in nonionic detergent solution. Receptors in both the detergent-soluble and -insoluble fractions displayed similar affinities for 125I-EGF, and the values were in good agreement with those obtained for receptors in untreated membranes. The receptors in both fractions also formed identical direct linkage complexes with 125I-EGF in similar yield, providing no evidence for partitioning of different molecular species of EGF receptors in the detergent-soluble and -insoluble fractions. Gel chromatography of the detergent-soluble membrane fraction on Sepharose 6-B revealed heterogeneity of 125I-EGF binding activity; the smallest and most monodisperse peak of activity resolved by this technique was eluted at a Stokes radius of 95 Å. Operationally soluble 125I-EGF binding activity also behaved heterogeneously during velocity sedimentation; more than half the activity sedimented more rapidly than the apparently monidisperse, 7S form. An average of less than half the nonionic detergent-solubilized activity recovered from 10 independent membrane preparations behaved as an apparently monodisperse entity. Since a maximum of 60% of 125I-EGF binding activity was operationally soluble, less than 25% of the total EGF binding activity was recovered in an apparently monodisperse form. The remaining 75% of the EGF receptors displayed a marked tendency to exist as aggregates in nonionic detergent solutions.  相似文献   

18.
Epidermal growth factor (EGF) is a peptide shown to effect precocious incisor tooth eruption in rat pups. Binding sites for EGF were visualized in the continuously erupting adult rat incisor by light and electron microscope radioautography after in vivo injection of 125I-EGF. These binding sites represented EGF receptors because of (i) competition between 125I-EGF binding at 2 min after injection and a coinjected excess of unlabeled EGF; (ii) the receptor-mediated endocytosis of 125I-EGF at 15 and 30 min after injection; and (iii) the demonstration of EGF receptor kinase activation in vivo. The stem and the mitotic cells in the epithelial odontogenic organ at the growing end of the tooth develop into two nondividing layers of the enamel organ: (i) ameloblasts which secrete enamel and are subsequently involved in the enamel maturation process, and (ii) papillary layer cells situated between the blood supply and the ameloblasts. Although few EGF receptors were present at the mitotic end, receptor density was highest at the mature end of the enamel organ. High levels of 125I-EGF binding were found on papillary layer cells and ruffle-ended, but not smooth-ended, ameloblasts. This implies a cyclical exteriorization and internalization of receptors during modulations between the two cell types. These data suggest that the EGF receptor mediates a major function of the enamel organ in the formation of enamel.  相似文献   

19.
GH4C1 cells, a clonal strain of rat pituitary tumor cells, have high-affinity, functional receptors for the inhibitory hypothalamic peptide somatostatin (SRIF) and for epidermal growth factor (EGF). In this study we have examined the events that follow the initial binding of SRIF to its specific plasma membrane receptors in GH4C1 cells and have compared the processing of receptor-bound SRIF with that of EGF. When cells were incubated with [125I-Tyr1]SRIF at temperatures ranging from 4 to 37 degrees C, greater than 80% of the specifically bound peptide was removed by extraction with 0.2 M acetic acid, 0.5 M NaCl, pH 2.5. In contrast, the subcellular distribution of receptor-bound 125I-EGF was temperature dependent. Whereas greater than 95% of specifically bound 125I-EGF was removed by acid treatment after a 4 degrees C binding incubation, less than 10% was removed when the binding reaction was performed at 22 or 37 degrees C. In pulse-chase experiments, receptor-bound 125I-EGF was transferred from an acid-sensitive to an acid-resistant compartment with a half-time of 2 min at 37 degrees C. In contrast, the small amount of [125I-Tyr1]SRIF that was resistant to acid treatment did not increase during a 2-h chase incubation at 37 degrees C. Chromatographic analysis of the radioactivity released from cells during dissociation incubations at 37 degrees C showed that greater than 90% of prebound 125I-EGF was released as 125I-tyrosine, whereas prebound [125I-Tyr1]SRIF was released as a mixture of intact peptide (55%) and 125I-tyrosine (45%). Neither chloroquine (0.1 mM), ammonium chloride (20 mM), nor leupeptin (0.1 mg/ml) increased the amount of [125I-Tyr1]SRIF bound to cells at 37 degrees C. Furthermore, chloroquine and leupeptin did not alter the rate of dissociation or degradation of prebound [125I-Tyr1]SRIF. In contrast, these inhibitors increased the amount of cell-associated 125I-EGF during 37 degrees C binding incubations and decreased the subsequent rate of release of 125I-tyrosine. The results presented indicate that, as in other cell types, EGF underwent rapid receptor-mediated endocytosis in GH4C1 cells and was subsequently degraded in lysosomes. In contrast, SRIF remained at the cell surface for several hours although it elicits its biological effects within minutes. Furthermore, a constant fraction of the receptor-bound [125I-Tyr1]SRIF was degraded at the cell surface before dissociation. Therefore, after initial binding of [125I-Tyr1]SRIF and 125I-EGF to their specific membrane receptors, these peptides are processed very differently in GH4C1 cells.  相似文献   

20.
Treatment of Swiss mouse 3T3 cells and human epidermoid carcinoma A431 cells with protamine at 37 degrees C increased the 125I-epidermal growth factor (EGF) binding activity at 4 degrees C. The effect of protamine on the increase of 125I-EGF binding activity appeared to be time, temperature, and dose dependent. This up-modulation of 125I-EGF binding by protamine correlated with protamine enhancement of EGF-stimulated mitogenesis, with respect to the magnitude of the effect and the dose response curves. Scatchard plot analyses indicated that protamine induced an increase in numbers of both high and low affinity EGF receptors without affecting their affinities. Protamine also increased functionally active EGF receptors in plasma membranes and solubilized membranes. This was evidenced by Scatchard plot analyses and by a protamine-induced increase of 125I-EGF-EGF receptor complex and an increase in EGF-stimulated phosphorylation of the EGF receptor. Combined with column chromatography of the solubilized EGF receptor on protamine-agarose gel, these results suggest that protamine may increase the EGF receptor number by directly activating cryptic EGF receptors in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号