首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of glutathione (1 mmol/L) (GSH) on in vitro mucosal uptake and in vivo absorption of75Se-labeled selenite (10 μmol/L) was investigated in rat jejunum. For comparison, the effect ofl-cysteine (1 mmol/L) on in vivo absorption of75Se-labeled selenite was also studied. In the in vitro, uptake experiments, only the mucosal surface was exposed to the incubation medium for 3 min. For the in vivo experiments, a luminal perfusion technique was employed. GSH inhibited in vitro mucosal Se uptake, whereas absorption in vivo was stimulated by GSH.l-Cysteine also stimulated in vivo Se absorption, confirming former in vitro mucosal uptake experiments. Thus, unlikel-cysteine, GSH affected in vitro and in vivo absorption of Se from selenite differently. Enzymatic cleavage of products of the reaction of selenite with GSH occuring more efficiently under in vivo than in vitro conditions may be a prerequisite for the stimulatory effect of GSH on Se absorption. This apparently does not apply to the stimulatory effect of cysteine. Since, GSH occurs in the intestinal lumen under physiological conditions, it may contribute to the high bioavailability of Se from selenite.  相似文献   

2.
The influence of several thiols (conc. 1 mmol/L) on mucosal uptake of75Se from75Se-labeled selenite (conc. 10 μmol/L) across the brush border of rat jejunum and cecum was investigated in vitro using a short-term uptake technique.l-Cysteine (l-Cys) stimulated75Se uptake in the mid- and distal jejunum and cecum, but not in the proximal jejunum. The effect was maximal in the distal jejunum.d-Cys was less effective in the jejunum and similarly effective in the cecum.l-Leucine (l-Leu) andl-glutamic acid significantly reduced the stimulatory effect ofl-Cys on Se uptake in the distal jejunum, whereas the respective effect ofd-Cys was not diminished byl-Leu. Cysteamine stimulated mucosal75Se uptake at all intestinal sites tested, whereas the effect of mercaptopyruvate was restricted to the distal jejunum. Thioglycolate also enhanced75Se uptake in the distal jejunum. The stimulatory effects ofl-Cys, mercaptopyruvate, and thiologlycolate were Na+-dependent, whereas the effect of cysteamine also occurred in the absence of Na+. Mercaptosuccinate,d-penicillamine, ergothioneine, and thiosulfate did not enhance mucosa75Se uptake. It is concluded from these findings that the reaction of some thiols with selenite results in Se compounds that are rapidly absorbed by the intestinal epithelium through various Na+-dependent and Na+-independent, mechanisms. The high bioavailability of Se from selenite found by others might thus be the result of the presence of thiols in the gastrointestinal tract.  相似文献   

3.
The uptake of selenodiglutathione and selenodicysteine was compared to that of selenite by brush border membrane vesicles (BBMV) prepared from rat intestinal tracts. It was found that it is critical to maintain a pH of 6.0 or below to prevent the spontaneous breakdown of these compounds. When conducted at pH 6.0, the uptake of selenodiglutathione and selenodicysteine was more than ten times faster than for selenite selenium. Ligated intestinal loop studies were conducted to determine if similar results would be obtained in vivo. In comparison to selenite, selenium absorption was enhanced 68% and the transfer to the body increased 2.4-fold when selenium as selenodiglutathione was placed in the ileum. The absorption of selenium as selenodicysteine was increased by 57% and the transfer doubled in comparison to selenite when placed in the ileum. Thus, the stimulated absorption of selenite by glutathione or cysteine appears to be through the formation of complexes with these compounds.  相似文献   

4.
Intestinal metabolism of the subtoxic level of selenite in rats was investigated using a double-perfusion system, which is an in situ, in vitro preparation in which the intestinal lumen and its vasculature are perfused simultaneously. The toxicity of sodium selenite was determined by inhibition of 3-O-methyl glucose (3MG) absorption and by histological examination. Levels of 1.2 mM selenite were required to significantly (p<0.05) reduce 3MG intestinal absorption (58±11%, mean±SD). Cation-exchange chromatography was used to determine the chemical forms of Se from selenite after using luminal concentrations of 1–200 μM in vascular perfusates. The chemical forms were selenite, selenodiglutathione (GS-Se-SG), mixed selenoglutathione plus cysteine (GS-Se-CYS), selenodicysteine (CYS-Se-CYS), protein-bound Se, and unidentified selenocompounds. Selenite was the predominant selenocompound found in vascular perfusate, but protein-bound Se was the predominant metabolite from selenite present in the vascular effuents. There was a corresponding increase of all metabolites with increased levels of selenite with time of absorption, but not with increased concentration of luminal selenite.  相似文献   

5.
研究了箬叶多糖FⅢ-a及其化学修饰物、亚硒酸钠和GSH对Cu2+诱导的低密度脂蛋白氧化修饰的保护作用.其结果表明箬叶多糖、硫酸酯多糖、硒酸酯多糖可显著抑制脂质过氧化产物(TBARS)及荧光物质的生成,彼此之间无明显差异.但对VE的消耗有着不同的保护作用,其顺序是FⅢ-a>S-FⅢ-a>Se-FⅢ-a,并且具有明显的量效关系.硒或GSH对Cu2+诱导的LDL氧化修饰无明显的抑制,但联合使用在0.125mmol/LNa2SeO3和0.2mmol/LGSH及12.5μmol/LNa2SeO3和0.02mmol/LGSH的浓度下能强烈地抑制TBARS的生成,甚至比正常的LDL还要低.但是对VE的消耗只有较弱的保护作用,硒酸酯多糖与此相似.Na2SeO3在0.125mmol/L时可以明显抑制荧光物质的生成.  相似文献   

6.
Homocysteine uptake by human umbilical vein endothelial cells in culture   总被引:1,自引:0,他引:1  
The characteristics of the uptake of L-homocysteine by cultures of human umbilical vein endothelial cells have been examined. Uptake occurred by Na(+)-dependent and Na(+)-independent systems, but was essentially independent of the pH of the uptake medium. The Na(+)-independent system corresponded to system L, being totally inhibited by the presence of beta-2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH) a system L analogue. It was concluded on the basis of starvation experiments coupled with failure to detect any inhibition in the presence of 2-methylaminoisobutyric acid (MeAIB), a system A analogue, that the Na(+)-dependent uptake was wholly accounted for by system ASC. The kinetic properties of systems L and ASC were determined by omitting Na+ from the uptake medium and incorporating BCH in the medium, respectively. It has been concluded on the basis of the inhibitory effects of a number of amino acids that uptake of homocysteine occurs by those systems which transport cysteine.  相似文献   

7.
8.
NaPi IIb cotransporter is expressed in various tissues including mammary glands of mice. The physiological role of NaPi IIb in lactating mammary glands is still unclear. Therefore, it was the aim of the study to detect and to localize NaPi IIb protein in lactating goat mammary glands by Western analysis and immunohistochemistry. Furthermore, Na(+)-dependent P(i) uptake into apical membrane vesicles isolated from goat milk was determined using rapid filtration technique. NaPi IIb protein could specifically be detected in the apical membranes of lactating alveolar epithelial cells. Na(+)-dependent P(i) uptake into apical membrane vesicles could be measured, which was inhibited by phosphonoformic acid. The kinetic parameters were V(max) with 0.9 nmol/mg protein/10 s and K(m) with 0.22 mmol/L for P(i) affinity, K(m) value for Na(+) affinity 11 mmol/L. Stoichiometry of this mammary gland Na(+)/P(i) transport across the apical membranes seemed to be 1:1 P(i):Na(+) without cooperativity in P(i) and Na(+) binding as assessed by Scatchard and Hill plots. These features of Na(+)/P(i) transport suggest that it could be mediated by NaPi IIb. The quantitative role of this P(i) transport which is directed from the alveolar lumen into the epithelial cell of goat mammary gland will be the topic of further investigations.  相似文献   

9.
Inactivation of histamine by gastric mucosal tissue was examined in dispersed rabbit gastric mucosal cells. Mucosal cells were incubated with [14C]histamine. The formed radioactive metabolites were separated and identified by thin layer co-chromatography and quantitated, in both the cellular and extracellular mediums. Gastric mucosal cells internalized histamine, most of which was immediately methylated primarily to N tau-methylhistamine and released. Cellular histamine product accumulation reached a plateau. The rate of histamine methylation increased with increasing extracellular histamine concentration, moving towards a plateau above 5 microM. Histamine methylation was greatly decreased but not abolished at 4 degrees C, in the absence of Na+ and by phlorizin (0.5 mM), an inhibitor of Na(+)-dependent co-transport. Inhibition of histamine N-methyltransferase decreased intracellular methylhistamine content dose dependently without increasing intracellular histamine. The secretagogues pentagastrin and carbachol did not influence histamine metabolism but ethanol inhibited methylation. The data suggest that gastric mucosal cells take up histamine by a Na(+)-dependent and Na(+)-independent process. The histamine uptake capacity appears to be linked to the methylation activity within the cell. The decrease in histamine uptake and metabolism caused by ethanol could potentially increase histamine concentrations near the target cells and be the reason for the stimulatory effect of ethanol on acid secretion.  相似文献   

10.
In vivo and in vitro studies were conducted to investigate the chemical forms by ion-exchange chromatography of selenium (Se) present in rat and ovine spermatozoa. After injection with 75Se-selenite, the form of 75Se in rat sperm was selenocysteine, but selenocysteine and selenomethionine (SeMet) were present in ovine sperm. Presumably, synthesis of SeMet by rumen microbes are responsible for its presence in ovine sperm. In vitro incubation of ram sperm with selenocysteine or SeMet produced no changes, but incubation with selenite produced a compound that eluted one fraction before SeMet from the ion-exchange column. After treatment of this fraction with mercaptoethanol, it eluted in a later fraction upon rechromatography, suggesting it to be selenodicysteine. This compound is apparently formed because of high levels of cysteine in semen. Cysteine, reduced glutathione, and oxidized glutathione were also found in semen. The significance of the results is discussed.  相似文献   

11.
低浓度双氢哇巴因对豚鼠心室肌细胞内游离钙浓度的影响   总被引:6,自引:1,他引:5  
Yin JX  Wang YL  Li Q  Shang ZL  Su SW 《生理学报》2002,54(5):385-389
用激光共聚焦显微镜检查研究低浓度双氢哇巴因(DHO)对豚鼠心室肌细胞内钙浓度([Ca^2 ]i)的影响。DHO 1fmol/L-1 mmol/L可增加心室肌细胞的[Ca^2 ]i,尤其以10pmol/L DHO为显著,Nisoldipine,EGTA或TTX可分别部分抑制10pmol/L DHO的作用,去除胞外K^ 和Na^ 后,上述作用仍存在,以上结果表明,低浓度DHO中通过激活钙通道和TTX敏感的钠通道,或许还可直接促进胞内钙释放来增加[Ca^2 ]i,并有不依赖Na^ /K^ 泵而升高[Ca^2 ]i的作用。  相似文献   

12.
In this work, possible interference with functional activities of human lymphocytes after in vitro treatment with selenium was examined. Sodium selenite and selenomethionine compounds were tested in parallel, and their capability to inhibit or to increase the antibody production by lymphocytes was investigated. Furthermore, after incubation for 7 d, total cell-associated Se was measured by a fluorimetric method. The in vitro doses of Se employed in this study mainly reflect those measured in blood of individuals with different Se intake. Low doses of Se (0.5–2.0μM) added either as sodium selenite or selenomethionine did not alter the secretion of antibodies. When Se was added at higher levels, instead, an inhibitory effect was found using selenite, whereas a progressive increase in immunoglobulin production was observed after exposure to selenomethionine. In both cases, modifications were detected at 5 μM (395 μg Se/L), and were significant at 10 μM (789 μg Se/L). A different trend between the two chemical forms was also observed with regard to Se uptake by cells. Interestingly, both Se uptake and cell sensitivity were influenced by the density of the cells in culture. Our data suggest that the biological effects of Se in mammalian systems are strongly influenced by its chemical form, and caution should be exerted to avoid toxic effects of selenium.  相似文献   

13.
Selenium (Se) is an essential trace element for humans and animals. A hydroponic experiment was performed to study the effects of sulphur (S) on Se uptake, translocation, and assimilation in wheat (Triticum aestivum L.) seedlings. Sulphur starvation had a positive effect on selenate uptake and the form of Se supplied greatly influenced Se speciation in plants. Compared with the control plants, Se uptake by the S-starved plants was enhanced by 4.81-fold in the selenate treatment, and selenate was readily transported from roots to shoots. By contrast, S starvation had no significant effect on selenite uptake, and selenite taken up by roots was rapidly converted to organic forms and tended to accumulate in roots. X-ray absorption near edge spectroscopy (XANES) analysis showed that organic forms of selenium, including selenocystine, Se-methyl-selenocysteine (MeSeCys), and selenomethionine-Se-oxide, were dominant in the plants exposed to selenite and accounted for approximately 90 % of the total Se. Whereas selenate remained as the dominant species in the roots and shoots exposed to selenate, with little selenate converted to selenite and MeSeCys. Besides, sulphur starvation increased the proportion of inorganic Se species in the selenate-supplied plants, but had no significant effects on Se speciation in plants exposed to selenite. The present study provides important knowledge to understand the associated mechanism of Se uptake and metabolism in plants.  相似文献   

14.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

15.
一氧化氮缓解盐胁迫对玉米生长的抑制作用   总被引:50,自引:2,他引:50  
研究了一氧化氮(nitric oxide,NO)对NaCl 100mmol/L胁迫下玉米幼苗生长的影响.结果表明:0.1~200μmol/L的NO供体硝普钠(sodium nitroprusside,SNP),特别是100μmol/L SNP处理可以显著提高盐胁迫下玉米幼苗的干物质积累速率.100μmol/L的SNP处理还显著提高了叶绿素含量、植株体内K /Na 比和(Spd Spm)/Put的比值,降低膜透性.推测NO对盐胁迫下玉米生长抑制的缓解作用是由于NO促进根系对K 的选择性吸收及其向地上部的运输,而降低对Na 的吸收及其向地上部的运输,并促进Put向Spd和Spm的转化.  相似文献   

16.
还原亚硒酸盐产生红色单质硒光合细菌菌株的筛选与鉴定   总被引:4,自引:0,他引:4  
从实验室保藏的光合细菌中筛选出一株对亚硒酸钠还原效率较高的菌株S3,其亚硒酸钠还原产物通过透射电子显微镜及EDX(Electron-Dispersive X-ray)分析确定为红色单质硒。菌株S3的形态学特征、生理生化特征及光合色素扫描结果与固氮红细菌(Rhodobacter azotoformans)的特征基本一致;16S rDNA序列(GenBank登录号为DQ402051)在系统发育树中与固氮红细菌同属一个类群,序列同源性为99%。根据上述结果将菌株S3鉴定为固氮红细菌。初步研究了该菌株还原亚硒酸钠的特性,首次报道固氮红细菌具有还原亚硒酸盐产生红色单质硒的能力,为今后利用微生物方法治理环境中硒污染、利用微生物方法获得活性红色单质硒以及对微生物还原亚硒酸盐产生红色单质硒的机理研究奠定了良好的基础。  相似文献   

17.
Selenium (Se) is an essential nutritional factor with a chemopreventive potential. This study examined the ability of C57BL/6J mice, maintained for 8 weeks on Se-deficient (0.02 ppm Se), normal (0.20 ppm Se), or Se-supplemented (2.00 ppm Se) Torula yeast-based diets, to generate cytotoxic lymphocytes (CTL) and to destroy tumor cells. CTL were generated in vivo by intraperitoneal immunization with P815 cells and in vitro by allogeneic stimulation of cells from animals maintained on a normal diet in media supplemented with 1 x 10(-9) to 1 x 10(-6) M Se (as selenite). Lymphocytes from animals maintained on the Se-supplemented diet had a greater ability to destroy tumor cells than lymphocytes from animals maintained on the normal diet, whereas Se deficiency reduced the cytotoxicity. The effects on cytotoxicity were accompanied by parallel changes in the levels of lymphotoxin produced. The greatest enhancement of tumor cytodestruction occurred with supplementation of 1 x 10(-7) M Se, whereas with 1 x 10(-6) M there was inhibition of the cytotoxic responses. The stimulatory effect of Se occurred during the phase of CTL generation rather than during the lytic phase of cytotoxicity. These results indicated that Se supplementation enhances CTL generation and the ability of a host to destroy malignant cells, whereas Se deficiency has the opposite effect.  相似文献   

18.
The transport characteristics of L- and D-histidine through the blood-lung barrier were studied in cultured rat lung microvascular endothelial cells (LMECs). L-Histidine uptake was a saturable process. The addition of metabolic inhibitors [2,4-dinitrophenol (DNP) and rotenone] reduced the uptake rate of L-histidine. Ouabain, an inhibitor of Na(+)-K(+)-ATPase, also reduced uptake of L-histidine. Moreover, the initial L-histidine uptake rate was reduced by the substitution of Na(+) with choline chloride and choline bicarbonate in the incubation buffer. The system N substrate, L-glutamic acid gamma-monohydroxamate, also inhibited uptake of L-histidine. However, system N-mediated transport was not pH sensitive. These results demonstrated that L-histidine is actively taken up by a system N transport mechanism into rat LMECs, with energy supplied by Na(+). Moreover, the Na(+)-independent system L substrate, 2-amino-2-norbornanecarboxylic acid (BCH), had an inhibitory effect on L-histidine uptake in Na(+) removal, indicating facilitated diffusion by a Na(+)-independent system L transport into the rat LMECs. These results provide evidence for there being at least two pathways for L-histidine uptake into rat LMECs, a Na(+)-dependent system N and Na(+)-independent system L process. On the other hand, the uptake of D-histidine into rat LMECs was not reduced by the addition of DNP, rotenone, or ouabain, or by Na(+) replacement. Although the uptake of D-histidine was reduced in the presence of BCH, the addition of L-glutamic acid gamma-monohydroxamate did not significantly decrease uptake of D-histidine. These results suggest that the uptake of D-histidine by rat LMECs has different characteristics compared with its isomer, L-histidine, indicating that system N transport did not involve D-histidine uptake.  相似文献   

19.
The influences of fulvic acid (FA) on bioavailability and toxicity of selenite for wheat seedling and growth were studied by green-house hydroponic experiment. The results showed that seed germination, embryo development, and growth were stimulated by selenite in the concentration range of 0.1–1.0 mg/L. In the presence of FA, the stimulation effects were more obviously observed. However, when the concentration of selenite exceeded 1.0 mg/L, toxic effects were observed for most of the measured indicators. The presence of FA could reduce the bioavailability of Se and could antagonize the toxic effects of Se. The reasons for the antagonism were caused by the inhibitory effects of FA on uptake of Se by plants and by the stimulating effects of FA on plant growth.  相似文献   

20.
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by glutaryl-CoA dehydrogenase deficiency, which leads to accumulation in body fluids and in brain of predominantly glutaric acid (GA), and to a lesser extent of 3-hydroxyglutaric and glutaconic acids. Neurological presentation is common in patients with GA I. Although the mechanisms underlying brain damage in this disorder are not yet well established, there is growing evidence that excitotoxicity may play a central role in the neuropathogenesis of this disease. In the present study, preparations of synaptosomes, synaptic plasma membranes and synaptic vesicles, as well as cultured astrocytes from rat forebrain were exposed to various concentrations of GA for the determination of the basal and potassium-induced release of [(3)H]glutamate by synaptosomes, Na(+)-independent glutamate binding to synaptic membranes and vesicular glutamate uptake and Na(+)-dependent glutamate uptake into astrocytes, respectively. GA (1-100 nM) significantly stimulated [(3)H]glutamate binding to brain plasma membranes (40-70%) in the absence of extracellular Na(+) concentrations, reflecting glutamate binding to receptors. Furthermore, this stimulatory effect was totally abolished by the metabotropic glutamate ligands DHPG, DCG-IV and l-AP4, attenuated by the ionotropic non-NMDA glutamate receptor agonist AMPA and had no interference of the NMDA receptor antagonist MK-801. Moreover, [(3)H]glutamate uptake into synaptic vesicles was inhibited by approximately 50% by 10 and 100 nM GA and Na(+)-dependent [(3)H]glutamate uptake by astrocytes was significantly increased (up to 50%) in a dose-dependent manner (maximal stimulation at 100 microM GA). In contrast, synaptosomal glutamate release was not affected by the acid at concentrations as high as 1 mM. These results indicate that the inhibition of glutamate uptake into synaptic vesicles by low concentrations GA may result in elevated concentrations of the excitatory neurotransmitter in the cytosol and the stimulatory effect of this organic acid on glutamate binding may potentially cause excitotoxicity to neural cells. Finally, taken together these results and previous findings showing that GA markedly decreases synaptosomal glutamate uptake, it is possible that the stimulatory effect of GA on astrocyte glutamate uptake might indicate that astrocytes may protect neurons from excitotoxic damage caused by GA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号