首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Maillard reaction and oxidative stress during aging of soybean seeds   总被引:8,自引:0,他引:8  
The chemical reactions that may lead to the loss of seed viability were investigated both during the accelerated aging and natural aging of soybeans ( Glycine max Merrill cv. Chippewa 64). Under conditions of accelerated aging (36°C and 75% RH), fluorescence of soluble proteins accumulated, which was closely correlated with the loss of seed germinability and vigor. We were able to show this correlation by using partially purified proteins for the assay. Fluorescence also increased in seeds under good storage conditions (5°C for up to 21 years), although there was a less significant correlation between seed viability and the accumulation of fluorescent products during the time of natural aging. The rise in protein fluorescence is interpreted as an increase of Maillard products. The carbonyl content of soluble proteins (a measure of the oxidative damage) did not change significantly during either accelerated aging or natural aging: however the elimination of carbonyls during germination seemed to be hindered in seeds that had poor germination. The Maillard reaction may be a consequence of the formation of reducing sugars through a gradual hydrolysis of oligosaccharides during aging. Preliminary evidence from the natural aging study showed that, when seeds were in the glassy state, the sugar hydrolysis was inhibited. These results suggest that the Maillard reaction and oxidative reaction may play an important role in seed deterioration.  相似文献   

2.
In a search for the mechanism of desiccation tolerance, a comparison was made between orthodox (desiccation-tolerant) soybean ( Glycine max [L.] Merrill) and recalcitrant (desiccation-intolerant) red oak ( Quercus rubra L.) seeds. During the maturation of soybean seeds, desiccation tolerance of seed axes is correlated with increases in sucrose, raffinose and stachyose. In cotyledons of mature oak seeds, sucrose levels are equal to those in mature soybeans, but oligosaccharides are absent. By using the thermally stimulated current method, we observed the glassy state in dry soybean seeds during maturation. Oak cotyledons showed the same phase diagram for the glass transition as did mature soybeans. By using X-ray diffraction, we found the maturation of soybeans to be associated with an increased ability of membranes to retain the liquid crystalline phase upon drying, whereas the mature oak cotyledonary tissue existed in the gel phase under similar dry conditions. These findings lead to the conclusion that the glassy state is not sufficient for desiccation tolerance, whereas the ability of membranes to retain the liquid crystalline phase does correlate with desiccation tolerance. An important role for soluble sugars in desiccation tolerance is confirmed, as well as their relevance to membrane phase changes. However, the presence of soluble sugars does not adequately explain the nature of desiccation tolerance in these seeds.  相似文献   

3.
Two primary biochemical reactions in seed ageing (lipid peroxidation and non-enzymatic protein glycosylation with reducing sugars) have been studied under different seed water contents and storage temperatures, and the role of the glassy state in retarding biochemical deterioration examined. The viability loss of Vigna radiata seeds during storage is associated with Maillard reactions; however, the contribution of primary biochemical reactions varies under different storage conditions. Biochemical deterioration and viability loss are greatly retarded in seeds stored below a high critical temperature (approximately 40 degrees C above glass transition temperature). This high critical temperature corresponds to the cross-over temperature (T(c)) of glass transition where molecular dynamics changes from a solid-like system to a normal liquid system. The data show that seed ageing slows down significantly, even before seed tissue enters into the glassy state.  相似文献   

4.
Beech (Fagus sylvatica L.) seeds indicate intermediate storage behaviour. Properties of water in seed tissues were studied to understand their requirements during storage conditions. Water sorption isotherms showed that at the same relative humidity (RH) the water content is significantly higher in embryo axes than cotyledons. This tendency maintains also after recalculating the water content for zero amount of lipids in tissues. Differential thermal analysis (DTA) indicated water crystallization exotherms in the embryo axes at moisture content (MC) higher than 29% and 16% in the cotyledons. In order to examine the occurrence of glassy state in the cytoplasm of beech embryos as a function of water content, isolated embryo axes were examined using electron spin resonance (ESR) of nitroxide TEMPO probe located inside axes cells. TEMPO molecules undergo fast reorientations with correlation time varied from 2 x 10(-9) s at 180 K to 2 x 10(-11) s at 315 K. Although the TEMPO molecules label mainly the lipid bilayers of cell membranes, they are sensitive to the dynamics and phase transformation of the cytoplasmic cell interior. The label motion is clearly affected by a transition between liquid and glassy state of the cytoplasm. The glass transition temperature (T(g)) raises from 253 to 293 K when water content decreases from 18% to 8%. Far from T(g) the motion is described by Arrhenius equation with very small activation energy E(a) in the liquid state and is relatively small in the glassy state where E(a)=1.5 kJ/mol for 28% H(2)O and E(a)=4.7 kJ/mol for 8% H(2)O or less. The optimal storage conditions of beech seeds are proposed in the range from 255 K for 15% H(2)O to 280 K for 9% H(2)O.  相似文献   

5.
The glassy state in corn embryos   总被引:3,自引:2,他引:1       下载免费PDF全文
The possibility is examined whether seeds may survive the desiccated state in part by vitrification, or the formation of a glassy state. Embryos excised from viable corn (Zea mays L.) seeds at low moisture contents show a series of low temperature first- and second-order phase transitions in the differential scanning calorimeter. These embryos produce normal seedlings if moistened. The thermal events can be duplicated almost entirely in both extracted lipids and purified commercial corn oil. They are therefore associated primarily with these bulk lipids, since membrane phospholipids are present in too small an amount to produce a detectable signal. When the bulk lipids have been extracted, a glass transition appears in the remaining material. At low water contents, it occurs above +40°C and systematically falls to below −60°C as the water content of the embryo rises to 20%. These data are consistent with our hypothesis that the desiccated state in seeds is a glassy state, and that imbibition of water reduces the glass transition temperature below ambient, allowing biochemical activity to resume.  相似文献   

6.
人工老化处理对结球甘蓝种子生理生化特性的影响   总被引:3,自引:0,他引:3  
以结球甘蓝品种‘冬升’种子为材料,研究高温(40℃)高湿(相对湿度100%)人工老化处理过程中种子的萌发特性、种子浸出液相对电导率和丙二醛、可溶性蛋白、可溶性糖含量以及抗氧化酶活性的变化,以揭示种子劣变的机理。结果表明:(1)人工老化处理甘蓝种子的含水量和不正常苗率均随着老化时间的延长逐渐增加,而种子发芽势、发芽率、发芽指数和活力指数的增加均逐渐降低。(2)随着处理天数的延长,老化处理甘蓝种子的浸出液电导率显著增大,浸出液可溶性糖含量逐渐升高,可溶性蛋白含量表现出显著下降趋势,而种子MDA含量呈先升高后逐渐下降的趋势。(3)在结球甘蓝种子老化进程中,其种子中SOD、POD、CAT活性变化的趋势相似,均随老化程度的加深而逐渐降低;而APX活性在老化处理的最初2d显著增加,第6天显著降低。研究发现,在结球甘蓝种子老化进程中,种子活力和萌发率显著降低,其种子浸出液电导率、可溶性蛋白含量、可溶性糖含量、保护酶活性变化与种子老化及劣变程度密切相关,膜脂过氧化作用可能是引起或加剧种子老化劣变的重要原因之一。  相似文献   

7.
Although the presence of intracellular aqueous glasses has been established in seeds, their physiological role in storage stability is still conjectural. Therefore, we examined, using differential scanning calorimetry, the thermal behavior of glass transitions in axes of bean (Phaseolus vulgaris L.) with water contents (WC) between 0 and 1 g H2O/g dry weight (g/g) and temperatures between -120 and +120[deg]C. Three types of thermal behaviors associated with the glass transition were observed. The appearance, the glass -> liquid transition temperature, and the amount of energy released during these transitions were dependent on the tissue WC. No glass transitions were observed at WC lower than 0.03 and higher than 0.45 g/g. A brief exposure to 100[deg]C altered the glass properties of tissues with WC between 0.03 and 0.08 g/g but did not affect the thermal behavior of glasses with higher WC, demonstrating that thermal history is important to the intracellular glass behavior at lower WC. Correspondence of data from bean to models predicting the effects of glass components on the glass -> liquid transition temperature suggests that the intracellular glasses are composed of a highly complex sugar matrix, in which sugar and water molecules interact together and influence the glass properties. Our data provide evidence that additional glass properties must be characterized to understand the implications of a glassy state in storage stability of seeds.  相似文献   

8.
Sugars and desiccation tolerance in seeds   总被引:37,自引:9,他引:28       下载免费PDF全文
Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing.  相似文献   

9.
10.
Embryonic axes and cotyledons of three soybean ( Glycine max L. cv. Gudzon) seed lots designated as "normal", "naturally aged" and "acceleratedly aged" were analyzed for their organic free radical contents. No signals of free radicals were found in ESR spectra from cotyledonary material of the three samples investigated. High levels of organic free radicals were observed in the embryonic axes. There were significant differences in the free radical contents of the embryonic axes: the relative values of free radicals were 100, 190 and 170% for samples aged normally, naturally and in an accelerated manner, respectively. These results point to the physiological role of the embryonic axes during natural or accelerated aging of seeds, notwithstanding that the axis is a small part as compared to the cotyledons. It is suggested that lipid peroxidation in embryonic axes may play an important role in the seed deterioration during aging.  相似文献   

11.
《Annals of botany》1997,79(3):291-297
The relationship between the glassy state in seeds and storage stability was examined, using the glass transition curve and a seed viability database from previous experiments. Storage data for seeds at various water contents were studied by Williams–Landel–Ferry (WLF) kinetics, whereas the glass transition curves of seeds with different storage stability were analysed by the Gordon–Taylor equation in terms of the plasticization effect of water on seed storage stability. It was found that the critical temperatures (Tc) for long-term storage of three orthodox seeds were near or below their glass transition temperatures (Tg), indicating the requirement for the presence of the glassy state for long-term seed storage. The rate of seed viability loss was a function of T-Tgat T>Tg, which fitted the WLF equation well, suggesting that storage stability was associated with the glass transition, and that the effect of water content on seed storage was correlated with the plasticization effect of water on intracellular glasses. A preliminary examination suggested a possible link between the glass transition curve and seed storage stability. According to the determined WLF constants, intracellular glasses in seeds fell into the second class of amorphous systems as defined by Slade and Levine (Critical Reviews in Food Science and Nutrition30: 115–360, 1991). These results support the interpretation that the glassy state plays an important role in storage stability and should be a major consideration in optimizing storage conditions.  相似文献   

12.
Deterioration of soybean [ Glycine max (L.) Merr. cv. Essex] seeds during accelerated aging at 41°C and 100% relative humidity predisposes the embryonic axis to injury during the initial period of imbibition. This injury was prevented or greatly reduced in severity when excised axes were imbibed on blotters containing 30% polyethylene glycol which slowed the rate of water uptake and when axes were pre-equilibrated to a high moisture level. Rates of water uptake by "high"(no treatment) and "low vigor"(accelerated aged) excised axes were identical. However, high vigor axes tolerated rapid water uptake during early imbition, whereas low vigor axes did not. Leakage of electrolytes during early imbibition was nearly six times greater in low than in high vigor axes. Polyethylene glycol significantly reduced the leakage of electrolytes from both low and high vigor axes. The data are in agreement with the hypothesis that seed deterioration in soybeans involves membrane changes which may predispose embryonic tissues to injury during imbibition. Reduction of the rate of water uptake during the initial period of imbibition would allow extra time for membrane repair or rearrangement, thus permitting the tissues to develop in a more orderly manner. The data indicate that deterioration in soybean seeds involves, at least in part, a decrease in ability of seed axes to tolerate rapid water uptake at the start of imbibition and that this weakness may be compensated by osmotic control of water uptake.  相似文献   

13.
杂交水稻和不育系种子的劣变与生理生化变化   总被引:5,自引:0,他引:5  
杂交水稻和不育系种子在人工加速老化处理后,其发芽率、发芽指数和活力指数均比常规水稻种子下降迅速。在人工老化过程中,前者种子浸泡液的外渗氨基酸和钾离子含量均比后者高,游离的有机酸、氨基酸和脂肪酸含量增加的速度相似,均大于常规水稻种子。蛋白酶活性和可溶性蛋白质含量的增减,在易发生劣变种子与常规水稻种子之间均有显著差异。  相似文献   

14.
甜菜(BetavulgarisLcv.Loke)种子的人工老化(30℃,100%RH)导致种子的干重、生活力和活力逐渐丧失,线粒体的呼吸速率、细胞色素c氧化酶和苹果酸脱氢酶的活性下降。线粒体蛋白质随着种子老化而显著变化,小分子量热休克蛋白(LMWHSP)22从老化的0d到30d增加,然后从30d到90d下降。可以认为甜菜种子人工老化过程中线粒体活性和LMWHSP22的含量变化与种子活力密切相关。  相似文献   

15.
Freeze-fracture electron microscopy was used to study water content related freezing resistance in Grand Rapids lettuce seeds. Consistent and recognizable conformational changes occurred in lipid-water phases of lettuce seeds at different moisture contents. In air-dry lettuce seed cotyledons, the lipids lying in spherical lipid bodies near the cell wall appeared amorphous, while the structure was crystalline above 20% water content. The lipid bodies interassociated into membrane bilayers in seeds containing 20 to 25% water. Such lyotropic phase transitions in membrane lipids during lettuce seed hydration are believed to contribute to the biphasic freezing behavior observed in lettuce seeds at different moisture contents and to provide a natural freezing tolerance mechanism for highly desiccated plant tissues such as seeds.  相似文献   

16.
Glassy State and Seed Storage Stability: A Viability Equation Analysis   总被引:4,自引:0,他引:4  
Dry seeds exist generally in a glassy (or vitrified) state.The high viscosity of the glassy state would be expected tohave a retarding effect on deteriorative reactions in the cytoplasm.Thus the glassy state may be considered to be a biophysicalbarrier for seed deterioration. The present study aims to testthe hypothesis that seed storage stability is associated withthe glassy state. With the equations derived from the seed viabilityequation, we have calculated the maximum temperature (Tmax)for long-term storage of corn, pea and soybeans. The Tmax forlong-term seed storage is found to be in a good agreement withthe glass transition temperature (Tg) in each instance, suggestingthat seed deterioration would be accelerated when seeds arenot in the glassy state. Experiments with soybeans given acceleratedageing show that the loss of glassy state is followed by a rapiddecrease in seed viability. These observations provide indirectevidence that the glassy state may play a significant role inseed storage stability.Copyright 1994, 1999 Academic Press Glassy state, seed longevity, storage stability, viability analysis  相似文献   

17.
银杏种实发育过程中营养成分的动态变化研究   总被引:5,自引:0,他引:5  
傅秀红  李锋  韦霄  许成琼   《广西植物》2000,20(3):238-245
以银杏良种桂 G86 - 1为试材 ,对种实发育过程中种仁和种皮的维生素 C、 N、 P、 K、灰分、粗蛋白、粗脂肪、蔗糖、还原糖、粗纤维、淀粉等 11种营养成分的含量和积累的变化动态进行系统研究。结果表明 ,在种仁发育过程中 ,蔗糖、粗纤维、淀粉的含量和积累均随生长发育期的变化而递增 ,呈极显著相关关系 ;还原糖、粗脂肪、 N、 P、 K、灰分等养分在幼果期含量较高 ,但随发育期的变化而降低 ,呈显著相关关系 ,除还原糖外 ,这些养分的积累逐渐增加 ,呈极显著相关关系 ,还原糖的积累在盛花后 110 d前明显增加 ,随后逐渐下降 ;维生素 C在种实发育初期含量较高 ,至盛花后 80 d达到最高 ,随后逐渐下降。在种皮发育过程中 ,除还原糖、维生素 C外 ,其它营养成分的含量和积累的变化动态规律与种仁相一致 ;维生素 C在种皮的含量和积累均逐渐上升 ,呈显著相关关系 ;还原糖的含量变化没有明显的规律 ,呈上升趋势 ,积累逐渐增加 ,呈极显著相关关系。  相似文献   

18.
Ageing-induced changes in glutathione system of sunflower seeds   总被引:3,自引:1,他引:2  
The glutathione system is thought to be involved in defence mechanisms present in plant tissues. The efficacy of this system was evaluated in large seeds of sunflower ( Helianthus annuus L. cv. Peredovik) in response to accelerated ageing (43°C/75% relative humidity from 1 to 11 days). Differences between the embryo axis and cotyledons in relation to the glutathione system were also investigated. Additionally, lipid peroxidation was determined by measuring the malondialdehyde (MDA) content. All assays were performed using dry seeds and seeds subsequently hydrated by imbibition in distilled water for 12 h at 25°C. Accelerated ageing caused a marked decrease in seed viability, accompanied by an increase in mean germination time. There were no changes in total glutathione in dry seeds. However, the distribution in its reduced (GSH) and oxidized (GSSG) forms revealed that ageing produced a slow conversion from GSH to GSSG. As the ageing period increased, this effect was accompanied by a decrease in glutathione reductase (GR, EC 1.6.4.2) activity. The results also indicated that the GSH system exerts a different response in the embryo axis as compared with the cotyledon: (1) the GSH levels decreased less in the cotyledons than in axes of aged seeds, and (2) the GSSG level in cotyledons was independent of ageing, while its amount increased in aged embryo axes. These different responses, in conjunction with the lower MDA levels in large as compared with small seeds, indicate a possible protective role of the reserve lipids. The efficacy of the GSH system in aged seeds was associated with seed viability, as revealed by multiple regression analysis. Upon imbibition, aged seeds were able to restore their GSH levels, reaching values approximating those of unaged seeds.  相似文献   

19.
Intracellular glasses and seed survival in the dry state   总被引:2,自引:0,他引:2  
So-called orthodox seeds can resist complete desiccation and survive the dry state for extended periods of time. During drying, the cellular viscosity increases dramatically and in the dry state, the cytoplasm transforms into a glassy state. The formation of intracellular glasses is indispensable to survive the dry state. Indeed, the storage stability of seeds is related to the packing density and molecular mobility of the intracellular glass, suggesting that the physico-chemical properties of intracellular glasses provide stability for long-term survival. Whereas seeds contain large amounts of soluble non-reducing sugars, which are known to be good glass formers, detailed in vivo measurements using techniques such as FTIR and EPR spectroscopy reveal that these intracellular glasses have properties that are quite different from those of simple sugar glasses. Intracellular glasses exhibit slow molecular mobility and a high molecular packing, resembling glasses made of mixtures of sugars with proteins, which potentially interact with additional cytoplasmic components such as salts, organic acids and amino acids. Above the glass transition temperature, the cytoplasm of biological systems still exhibits a low molecular mobility and a high stability, which serves as an ecological advantage, keeping the seeds stable under adverse conditions of temperature or water content that bring the tissues out of the glassy state.  相似文献   

20.
Relevance of amadori and maillard products to seed deterioration   总被引:11,自引:1,他引:10       下载免费PDF全文
The possible role of Amadori and Maillard reactions in the deterioration of dry seeds was investigated using model systems and whole soybean seeds, Glycine max cv Hodgson. In model systems of glucose plus an enzyme (lysozyme), the production of Amadori products was accelerated by higher temperature and relative humidity. The reaction between glucose and lysozyme at 50°C, 75% relative humidity, leads to a progressive decline in enzymatic activity. During accelerated aging of soybean seeds (40°C, 100% relative humidity), a sequence is observed in which the Amadori products increase with time and then decline under conditions in which the Maillard products increase in the axes. Loss of germinability occurs at the time when the Maillard products increase in the soybean axes. These results are suggestive of a role for nonenzymic glycation in soybean seed deterioration during accelerated aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号