首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation of the galactose transport system in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
C DeJuan  R Lagunas 《FEBS letters》1986,207(2):258-261
The galactose transport system of Saccharomyces cerevisiae consists of one component which shows a Km value of approx. 4mM in growing cells. A rapid and irreversible inactivation of this transport is detected on impairment of protein synthesis. This inactivation shows the following characteristics: (i) it is due to changes in the Km and Vmax of the transport system; (ii) it follows first-order kinetics; (iii) it is an energy-dependent process and is stimulated by the presence of an exogenous carbon source; (iv) fermentable sub-dependent process and is stimulated by the presence of an exogenous carbon source; (iv) fermentable substrates stimulate inactivation more efficiently than non-fermentable substrates.  相似文献   

2.
The characteristics of the inducible galactose system in Saccharomyces cerevisiae were studied by using the nonmetabolized galactose analogues, l-arabinose and d-fucose, and galactokinaseless and transportless mutants. Induced wild-type cells transport l-arabinose by facilitated diffusion. Transportless cells transport neither galactose nor l-arabinose above the noninduced rate, whereas galactokinaseless cells transport galactose l-arabinose and d-fucose by facilitated diffusion. Determination of unidirectional rate of (14)C-labeled galactose uptake by preloaded galactokinaseless cells, containing a large unlabeled free-galactose pool, showed that the rate of galactose uptake by facilitated diffusion is greater than the rate of galactose metabolism at similar external galactose concentrations.  相似文献   

3.
Growth on galactose induces two transport processes, a high-affinity and a low-affinity process. The most important results of a comparison of the two processes were that (i) both depended on GAL2 expression, (ii) only the high-affinity process required galactokinase, (iii) both were down-regulated by catabolite inactivation, (iv) neither was significantly inhibited by carbonyl cyanide-p-trifluoromethoxy-phenyl-hydrazone, (v) neither was differentially inhibited by silver nitrate or mercuric chloride, and (vi) transport activity with a Km closer to that of the low-affinity process of whole cells was reconstituted in fused phospholipid membrane vesicles.  相似文献   

4.
Dual system for potassium transport in Saccharomyces cerevisiae.   总被引:17,自引:2,他引:15       下载免费PDF全文
In a newly formulated growth medium lacking Na+ and NH4+, Saccharomyces cerevisiae grew maximally at 5 microM K+. Cells grown under these conditions transported K+ with an apparent Km of 24 microM, whereas cells grown in customary high-K+ medium had a significantly higher Km (2 mM K+). The two types of transport also differed in carbonyl cyanide-m-chlorophenyl hydrazone sensitivity, response to ATP depletion, and temperature dependence. The results can be accounted for either by two transport systems or by one system operating in two different ways.  相似文献   

5.
Restriction in growth on galactose as unique source of energy due to respiratory deficiency resulting from mutation in a gene gal probably different from gal 3 is described.  相似文献   

6.
The characteristics of the biotin transport mechanism of Saccharomyces cerevisiae were investigated in nonproliferating cells. Microbiological and radioisotope assays were employed to measure biotin uptake. The vitamin existed intracellularly in both free and bound forms. Free biotin was extracted by boiling water. Chromatography of the free extract showed it to consist entirely of d-biotin. Cellular bound biotin was released by treating cells with 6 n H(2)SO(4). The rate of biotin uptake was linear with time for 10 min, reaching a maximum at about 20 min followed by a gradual loss of accumulated free vitamin from the cells. Biotin was not degraded or converted to vitamers during uptake. Transport was temperature- and pH-dependent, optimum conditions for uptake being 30 C and pH 4.0. Glucose markedly stimulated biotin transport. In its presence, large intracellular free-biotin concentration gradients were established. Iodoacetate inhibited the glucose stimulation of biotin uptake. The rate of vitamin transport increased in a linear fashion with increasing cell mass. The transport system was saturated with increasing concentrations of the vitamin. The apparent K(m) for uptake was 3.23 x 10(-7)m. Uptake of radioactive biotin was inhibited by unlabeled biotin and a number of analogues including homobiotin, desthiobiotin, oxybiotin, norbiotin, and biotin sulfone. Proline, hydroxyproline, and 7,8-diaminopelargonic acid did not inhibit uptake. Unlabeled biotin and desthiobiotin exchanged with accumulated intracellular (14)C-biotin, whereas hydroxyproline did not.  相似文献   

7.
Allantoin uptake in both growing and resting cultures of Saccharomyces cerevisiae occurs by a low-Km (ca. 15 micrometer) transport system that uses energy that is likely generated in the cytoplasm. This conclusion was based on the observation that transport did not occur in the absence of glucose or the presence of dinitrophenol, carbonyl cyanide-m-chloro-phenyl hydrazine, fluoride, or arsenate ions. Normal uptake was observed, however, in the presence of cyanide. The rate of accumulation was maximal at pH 5.2. In contrast to the urea transport system, allantoin uptake appeared to be unidirectional. Preloaded, radioactive allantoin was not lost from cells suspended in allantoin-free buffer and did not exchange with exogenously added, nonradioactive allantoin. Treatment of preloaded cells with nystatin, however, released the accumulated radioactivity. Allantoin accumulated within cells was isolated and shown to be chemically unaltered.  相似文献   

8.
9.
Oxalurate, the gratuitous inducer of the allantoin degradative enzymes, was taken into the cell by an energy-dependent active transport system with an apparent Km of 1.2 mM. Efflux of previously accumulated oxalurate was rapid, with a half-life of about 2 min. The oxalurate uptake system appears to be both constitutively produced and insensitive to nitrogen catabolite repression. The latter observations suggest that failure of oxalurate to bring about induction of allophanate hydrolase in cultures growing under repressive conditions does not result from inducer exclusion, but rather from repression of dur1,2 gene expression.  相似文献   

10.
Urea transport in Saccharomyces cerevisiae.   总被引:8,自引:12,他引:8       下载免费PDF全文
Urea transport in Saccharomyces cerevisiae occurs by two pathways. The first mode of uptake is via an active transport system which: (i) has an apparent Km value of 14 muM, (ii) is absolutely dependent upon energy metabolism, (iii) requires pre-growth of the cultures in the presence of oxaluric acid, gratuitous inducer of the allantoin degradative enzymes, and (iv) is sensitive to nitrogen repression. The second mode of uptake which occurs at external urea concentrations in excess of 0.5 mM is via either passive or facilitated diffusion.  相似文献   

11.
Proline transport in Saccharomyces cerevisiae.   总被引:7,自引:0,他引:7       下载免费PDF全文
The yeast Saccharomyces cerevisiae is capable of utilizing proline as the sole source of nitrogen. Mutants of S. cerevisiae with defective proline transport were isolated by selecting for resistance to either of the toxic proline analogs L-azetidine-2-carboxylate or 3,4-dehydro-DL-proline. Strains carrying the put4 mutation are defective in the high-affinity proline transport system. These mutants could still grow when given high concentrations of proline, due to the operation of low-affinity systems whose existence as confirmed by kinetic studies. Both systems were repressed by ammonium ions, and either was induce by proline. Low-affinity transport was inhibited by histidine, so put4 mutants were unable to grow on a medium containing high concentrations of proline to which histidine has been added.  相似文献   

12.
Allantoate uptake appears to be mediated by an energy-dependent active transport system with an apparent Michaelis constant of about 50 microM. Cells were able to accumulate allantoate to greater than 3,000 times the extracellular concentration. The rate of accumulation was maximum at pH 5.7 to 5.8. The energy source for allantoate uptake is probably different from that for uptake of the other allantoin pathway intermediates. The latter systems are inhibited by arsenate, fluoride, dinitrophenol, and carboxyl cyanide-m-chlorophenyl hydrazone, whereas allantoate accumulation was sensitive to only dinitrophenol and carboxyl cyanide-m-chlorophenyl hydrazone. Efflux of preloaded allanotate did not occur at detectable levels. However, exchange of intra- and extracellular allantoate was found to occur very slowly. The latter two characteristics are shared with the allantoin uptake system and may result from the sequestering of intracellular allantoate within the cell vacuole. During the course of these studies, we found that, contrary to earlier reports, the reaction catalyzed by allantoinase is freely reversible.  相似文献   

13.
Myo-inositol transport in Saccharomyces cerevisiae.   总被引:7,自引:3,他引:4       下载免费PDF全文
myo-Inositol uptake in Saccharomyces cerevisiae was dependent on temperature, time, and substrate concentration. The transport obeyed saturation kinetics with an apparent Km for myo-inositol of 0.1 mM, myo-Inositol analogs, such as scyllo-inositol, 2-inosose, mannitol, and 1,2-cyclohexanediol, had no effect on myo-inositol uptake, myo-Inositol uptake required metabolic energy. Removal of D-glucose resulted in a loss of activity, and azide and cyanide ions were inhibitory. In the presence of D-glucose, myo-inositol was accumulated in the cells against a concentration gradient. A myo-inositol transport mutant was isolated from UV-mutagenized S. cerevisiae cells using the replica-printing technique. The defect in myo-inositol uptake was due to a single nuclear gene mutation. The activities of L-serine and D-glucose transport were not affected by the mutation. Thus it was shown that S. cerevisiae grown under the present culture conditions possessed a single and specific myo-inositol transport system. myo-Inositol transport activity was reduced by the addition of myo-inositol to the culture medium. The activity was reversibly restored by the removal of myo-inositol from the medium. This restoration of activity was completely abolished by cycloheximide.  相似文献   

14.
Choline transport in Saccharomyces cerevisiae.   总被引:1,自引:6,他引:1       下载免费PDF全文
Choline transport of Saccharomyces cerevisiae was measured by the filtration method with the use of glass microfiber paper. The uptake was time and temperature dependent. The kinetics of choline transport showed Michaelis behavior; an appearent Km for choline was 0.56 microM. N-Methylethanolamine, N,N-dimethylethanolamine, and beta-methylcholine were competitive inhibitors of choline transport, with Ki values of 40.1, 3.1, and 6.9 microM, respectively. Ethanolamine, phosphorylcholine, and various amino acids examined had no effect. Choline transport required metabolic energy; removal of glucose resulted in a great loss of transport activity, and the remaining activity was abolished by 2,4-dinitrophenol, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, arsenate, and cyanide. External Na+ was not required, and the transport was not effected by ionophores, valinomycin, and gramicidin D. These results indicate that S. cerevisiae possess an active choline transport system mediated by a specific carrier. This view is further supported by the isolation and characterization of a choline transport mutant. The choline transport activity in this mutant was very low, whereas the transport of L-leucine, L-methionine, D-glucose, and myo-inositol was normal. Together with the choline transport mutant, mutants defective in choline kinase were also isolated.  相似文献   

15.
The galactose structural genes of Saccharomyces cerevisiae were ordered by determining the genotypes of mitotic and meiotic recombinants from crosses heterozygous for the three genes. The most probable order is centromere-gal7-gal10-gal1. Nonreciprocal recombination was more frequent than reciprocal exchange, and both mitotic and meiotic co-conversions involving mutant sites in all three genes were observed.  相似文献   

16.
17.
18.
The regulatory characteristics exhibited by ureidosuccinate transport in Saccharomyces cerevisiae led us to hypothesize that this biosynthetic intermediate was transported via the degradative allantoate transport system. The hypothesis was verified by the finding that neither dal5 nor urep1 mutant strains could transport allantoate or ureidosuccinate. Mutations in the two loci were tightly linked and failed to complement one another, suggesting that they were allelic. The use of a common transport system for accumulation of both biosynthetic and degradative metabolites explains the paradoxical characteristics observed for control of ureidosuccinate and allantoate transport.  相似文献   

19.
Flocculation is governed by the competition between electrostatic repulsion (nonspecific interactions) and polysaccharide-protein bonds (specific interactions). In our study, the inhibition of flocculation by sugars for 12 strains of Saccharomyces cerevisiae leads us to extend the classification described in the literature and to define three groups of yeasts: flocculation mannose sensitive (MS), flocculation glucose-mannose sensitive (GMS), and flocculation mannose insensitive (MI). Only the first two groups showed specific interactions between proteins and mannans. n the MI group, the sugars tested did not inhibit flocculation. To characterize the particularities of the stereochemistry of the cell-wall proteic receptors of strains belonging to the MS and GMS groups, 31 sugars were used as inhibitor probes on two representative strains. The results show that the lectin specificity of strains belonging to the GMS group is less restricted regarding C-1 and C-2 hydroxyl groups than the lectin from strains belonging to the MS group, which interacts with all of the hydroxyl groups of mannopyranose. The two groups also differ with respect to inhibition by sugars: strains belonging to the MS group are partially inhibited whereas strains of the GMS group are completely inhibited. We observed that the presence of ethanol increases sugar fixation by strains from the MS group, but not from the GMS group. Moreover, both receptors interact with disaccharides, provided the two monomers are linked by an alpha(1-4), alpha(1-3), or alpha(1-2) bond.  相似文献   

20.
The sugar transport systems of Saccharomyces cerevisiae are irreversibly inactivated when protein synthesis is inhibited. This inactivation is responsible for the drastic decrease in fermentation observed in ammonium-starved yeast and is related to the occurrence of the Pasteur effect in these cells. Our study of the inactivation of the glucose transport system indicates that both the high-affinity and the low-affinity components of this system are inactivated. Inactivation of the high-affinity component evidently requires the utilization of a fermentable substrate by the cells, since inactivation did not occur during carbon starvation, when a fermentable sugar was added to starved cells, inactivation began, when the fermentation inhibitors iodoacetate or arsenate were added in addition to sugars, the inactivation was prevented, when a non-fermentable substrate was added instead of sugars, inactivation was also prevented. The inactivation of the low-affinity component appeared to show similar requirements. It is concluded that the glucose transport system in S. cerevisiae is regulated by a catabolite-inactivation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号