首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The characteristics of the inducible galactose system in Saccharomyces cerevisiae were studied by using the nonmetabolized galactose analogues, l-arabinose and d-fucose, and galactokinaseless and transportless mutants. Induced wild-type cells transport l-arabinose by facilitated diffusion. Transportless cells transport neither galactose nor l-arabinose above the noninduced rate, whereas galactokinaseless cells transport galactose l-arabinose and d-fucose by facilitated diffusion. Determination of unidirectional rate of (14)C-labeled galactose uptake by preloaded galactokinaseless cells, containing a large unlabeled free-galactose pool, showed that the rate of galactose uptake by facilitated diffusion is greater than the rate of galactose metabolism at similar external galactose concentrations.  相似文献   

2.
d-Fucose, a nonmetabolizable analogue of l-arabinose, prevents growth of Escherichia coli B/r on a mineral salts medium plus l-arabinose by inhibiting induction of the l-arabinose operon. Mutations giving rise to d-fucose resistance map in gene araC and result in constitutive expression of the l-arabinose operon. Most of these mutations also permit d-fucose to serve as a gratuitous inducer. It is concluded that d-fucose-resistant mutants produce an araC gene product with an altered inducer specificity. Addition of l-arabinose to cells induced with the gratuitous inducer, d-fucose, resulted in severe transient repression of operon expression followed by permanent catabolite repression. Transient repression but no permanent catabolite repression was obtained when cells unable to metabolize l-arabinose were employed. It is concluded that transport of l-arabinose alone is sufficient to achieve transient repression of its own operon, but that metabolism of l-arabinose must occur to achieve permanent catabolite repression of the l-arabinose operon. This general effect has been termed "self-catabolite repression."  相似文献   

3.
The previous report from this laboratory that l-arabinose is a gratuitous inducer of the galactose transport system has been found to be an artefact resulting from the combination of galactose contamination of commercial samples of l-arabinose and inhibition by l-arabinose of galactose metabolism by inactivation of uridine-diphosphate-glucose-4-epimerase. As a result of l-arabinose inhibition of the metabolism of the contaminating galactose, galactose itself serves as a gratuitous inducer, producing phenotypically epimeraseless yeast.  相似文献   

4.
L-arabinose binding protein from Escherichia coli B-r   总被引:14,自引:7,他引:7       下载免费PDF全文
A protein which is capable of binding l-arabinose-1-(14)C has been isolated from l-arabinose-induced cultures of Escherichia coli B/r. Analysis for this l-arabinose-binding protein (ABP) in a number of l-arabinose-negative mutants suggests that the ABP is not coded for by any of the known genetic units of the l-arabinose complex yet is under the control of the regulator gene araC. The ABP has been purified and found to bind l-arabinose, d-fucose, d-xylose, and l-ribulose with decreasing affinities. The K(m) for l-arabinose is 5.7 x 10(-6)m. The molecular weight, as determined by equilibrium centrifugation, was found to be 32,000. The protein was observed to have many features that liken it to other recently isolated binding proteins that have been implicated in the active transport of small molecules.  相似文献   

5.
Adhya, Sankar (University of Wisconsin, Madison), and Harrison Echols. Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J. Bacteriol. 92:601-608. 1966.-The inhibitory effect of glucose on the induction of the enzymes required for galactose utilization ("glucose effect") was studied in Escherichia coli. Experiments on the uptake into the cell of labeled inducers (d-galactose-C(14) and d-fucose-H(3)) pointed to inhibition at the level of inducer transport as the possible primary mechanism of the glucose effect in the case of the gal enzymes. This interpretation was supported by the finding that a mutant constitutive for the lac enzymes was resistant to glucose inhibition of galactose induction of the gal enzymes; the mutant had acquired a glucose-resistant alternative transport mechanism for galactose via the constitutively synthesized galactoside permease. Further support for the transport inhibition model was provided by the finding that glucose did not substantially inhibit induction of the gal enzymes when glucose and galactose were produced intracellularly by beta-galactosidase hydrolysis of lactose, even if excess glucose was added. The inducer uptake experiments also showed that d-galactose and d-fucose probably enter the cell via different transport systems, although uptake of both compounds was inhibited by glucose.  相似文献   

6.
As with other inducible enzymes, the induced synthesis of l-arabinose isomerase (l-arabinose ketol isomerase, EC 5.3.1.4) in Salmonella typhimurium is subject to catabolite repression. Of the three catabolite repressors tested, glucose produces maximum repression. Analogues of catabolite repressors like 2-deoxy-d-glucose and d-fucose also inhibit the synthesis of the enzyme. The catabolite repression is completely reversed in the presence of 1.5 x 10(-3)m cyclic 3',5'-adenosine monophosphate (AMP). The maximum repression is produced in glucose-grown cells in glucose-containing induction medium. Cyclic 3',5-AMP reverses this repression provided that the cells are treated with ethylenediaminetetraacetic acid (EDTA). In normal cells, cyclic 3',5'-AMP has no effect on the induction but in EDTA-treated cells the cyclic nucleotide enhances synthesis of the enzyme. The inhibition produced by d-fucose cannot be reversed by cyclic 3',5'-AMP. d-Fucose competes with the inducer l-arabinose in some step(s) involved in the process of induction.  相似文献   

7.
We have studied proton movements associated with substrate transport via the galactose transport system in Salmonella typhimurium. The addition of galactose to lightly buffered suspensions of anaerobic, non-metabolizing cells of Salmonella typhimurium, specifically induced for the galactose transport system, causes an increase in extracellularpH as galactose and protons enter the cell together. Other substrates for this transport system, D-fucose, 2-deoxygalactose, glucose and 2-deoxyglucose similarly cause an influx of protons when transported. In contrast, transport via the other major transport system for galactose, the methylgalactoside transport system, is not coupled to H+ influx. Comparison of kinetic data obtained from pH measurements with data obtained from measurement of active transport of galactose via the galactose transport system suggests that the apparent Km of the galactose transport system for this sugar differs under energized and non-energized conditions. At pH 7.2 the permeant anion SCN- increases both the rate and extent of galactose-induced proton influx; at pH 6 the rate, but not the extent is increased by SCN-.  相似文献   

8.
1. The hydrolysis of a variety of galactosides and other glycosides by alpha-galactosidases I and II of Vicia faba was studied. 2. The effect of temperature on kinetic parameters was also examined. 3. Both enzymes are inhibited by excess of substrate (p-nitrophenyl alpha-d-galactoside); with enzyme I this is competitive and is caused by the galactosyl moiety. 4. Enzyme I is inhibited by oligosaccharides possessing terminal non-reducing galactose residues and to a smaller extent by l-arabinose and d-fucose. 5. The effect of pH on K(m) and V(max.) values suggests that carboxyl and imidazole groups are involved in the catalytic activity of enzyme I. 6. Photo-oxidation experiments with enzyme I also suggest that an imidazole group is present at the active site.  相似文献   

9.
An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.  相似文献   

10.
Galactose transport in Salmonella typhimurium.   总被引:8,自引:8,他引:0       下载免费PDF全文
We have studied the various systems by which galactose can be transported in Salmonella typhimurium, in particular the specific galactose permease (GP). Mutants that contain GP as the sole galactose transport system have been isolated, and starting from these mutants we have been able to select point mutants that lack GP. The galP mutation maps close to another mutation, which results in the constitutive synthesis of GP, but is not linked to galR. Growth of wild-type strains on glaactose induces GP but not the beta-methylgalactoside permease (MGP). Strains lacking GP are able to grow slowly on galactose, and MGP is induced; however, D-fucose is a much better inducer of MGP. Induction of GP or MGP is not prevented by a pts mutation, although this mutation changes the apparent Km of MGP for galactose. pts mutations have no effect on GP. GP has a rather broad specificity: galactose, glucose, mannose, fucose, 2-deoxygalactose, and 2-deoxyglucose are substrates, but only galactose and fucose can induce this transport system.  相似文献   

11.
Galactose transport in Streptococcus thermophilus.   总被引:4,自引:2,他引:2       下载免费PDF全文
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

12.
Lactobacillus plantarum ATCC 8014 grew on melibiose at 30 C, but not at 37 C, although it grew on galactose or lactose at either temperature. ATCC 8014 grown on lactose at 30 or 37 C accumulated melibiose slowly, suggesting that melibiose may partly be transported by a lactose transport system. A lactose-negative mutant, NTG 21, derived from ATCC 8014 was isolated. The mutant was totally deficient in lactose transport, but retained normal melibiose transport activity. In NTG 21, the melibiose transport activity was induced by melibiose at 30 C, but not at 37 C. The transport activity itself was found to be stable for at least 3 hr at 37 C, suggesting that the induction process in the cytoplasm rather than the inducer entrance is temperature-sensitive in the organism. The organism also failed to form alpha-galactosidase at 37 C when grown on melibiose. The enzyme synthesis, however, was induced by galactose in NTG 21 (and also by lactose in ATCC 8014) even at 37 C, indicating that the induction of the enzyme is essentially not temperature-sensitive. In NTG 21, melibiose transport system and alpha-galactosidase were induced by galactose, melibiose and o-nitrophenyl-alpha-D-galactopyranoside when the strain was grown at 30 C. Raffinose induced melibiose transport system only a little, while it was a good inducer for alpha-galactosidase. Inhibition studies revealed that galactose may be a weak substrate of the melibiose transport system; no inhibition was demonstrated with lactose and raffinose.  相似文献   

13.
1. Strains of Escherichia coli K12 were made that are unable to assimilate glucose by the phosphotransferase system, since they lack the glucose-specific components specified by the genes ptsG and ptsM. 2. Derivative organisms lacking the methyl galactoside or galactose-specific transport system were examined for their ability to transport galactose, d-fucose, methyl beta-D-galactoside, glucose, 2-deoxy-D-glucose and methyl alpha-D-glucoside. 3. Galactose, glucose and to a lesser extent fucose are substrates for both transport systems. 4. 2-Deoxyglucose is transported on the galactose-specific but not the methyl galactoside system. 5. The ability of sugars to elicit anaerobic proton transport is associated with the galactose-specific, but not with the methyl galactoside transport activity. Hence a chemiosmotic mechanism of energization is likely to apply to the former but not to the latter. Alternatively the methyl galactoside system may be switched off under certain conditions, which would indicate a novel regulatory mechanism. 6. Details of the procedure for the derivation of strains may be obtained from the authors, and have been deposited as Supplementary Publication SUP 50074 (8 pages at the) British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1977), 161,1.  相似文献   

14.
The uptake of radioactively labeled hexoses and pentoses into the sorbitol-impermeable (3)H(2)O space (the space surrounded by the inner envelope membrane) of spinach (Spinacia oleracea L.) chloroplasts has been studied using silicone layer filtering centrifugation. Of the compounds tested, d-xylose, d-mannose, l-arabinose, and d-glucose are transported most rapidly, followed by d-fructose and l-arabinose. The rate of l-glucose uptake is only about 5% of that of d-glucose.The transport of d-glucose and d-fructose shows saturation characteristics, the K(m) for d-glucose was found to be about 20 mm. All sugars transport and phloretin inhibit d-glucose transport. The temperature dependency of d-glucose transport appears to have an activation energy of 17 kcal/mol.With low external concentrations of d-glucose the transport into the chloroplasts proceeds until nearly the external concentration is reached inside the chloroplasts.d-glucose transport is inhibited by high d-glucose concentrations in the medium. It is concluded that d-glucose and other hexoses are transported by carrier-mediated diffusion across the inner envelope membrane. This transport is similar to the transport of d-glucose into erythrocytes.  相似文献   

15.
Two galactose uptake systems were found in the mycelia of Neurospora crassa. In glucose-grown mycelia, galactose was transported by a low-affinity (Km = 400 mM) constitutive system which was distinct from the previously described glucose transport system I (R. P. Schneider and W. R. Wiley, J. Bacteriol. 106:479--486, 1971). In carbon-starved mycelia or mycelia incubated with galactose, a second galactose transport activity appeared which required energy, had a high affinity for galactose (Km = 0.7 mM), and was shown to be the same as glucose transport system II. System II also transported mannose, 2-deoxyglucose, xylose, and talose and is therefore a general monosaccharide transport system. System II was derepressed by carbon starvation, completely repressed by glucose, mannose, and 2-deoxyglucose, and partially repressed by fructose and xylose. Incubation with galactose yielded twice as much activity as starvation. This extra induction by galactose required protein synthesis, and represented an increase in activity of system II rather than the induction of another transport system. Glucose, mannose, and 2-deoxyglucose caused rapid degradation of preexisting system II; fructose and xylose caused a slower degradation of activity.  相似文献   

16.
1. Subcellular membrane vesicles were prepared from a strain of Escherichia coli constitutive for the GalP galactose-transport system. 2. The addition of substrates of the GalP transport system to vesicle suspensions promoted alkaline pH changes, which provided direct evidence for the coupling of sugar and proton transport. 3. Respiration-energized galactose transport was progressively inhibited at pH values above 6.0, and was abolished by agents that render the membrane permeable to protons. 4. The combined effects of valinomycin, the nigericin-like compound A217 and pH on galactose transport suggested that both delta pH and delta psi components of the protonmotive force contributed to energization of galactose transport. 5. These results substantiate the conclusion that the GalP transport system operates by a chemiosmotic mechanism.  相似文献   

17.
Galactose transport systems in Streptococcus lactis   总被引:12,自引:8,他引:4       下载免费PDF全文
Galactose-grown cells of Streptococcus lactis ML3 have the capacity to transport the growth sugar by two separate systems: (i) the phosphoenolpyruvate-dependent phosphotransferase system and (ii) an adenosine 5'-triphosphate-energized permease system. Proton-conducting uncouplers (tetrachlorosalicylanilide and carbonyl cyanide-m-chlorophenyl hydrazone) inhibited galactose uptake by the permease system, but had no effect on phosphotransferase activity. Inhibition and efflux experiments conducted using beta-galactoside analogs showed that the galactose permease had a high affinity for galactose, methyl-beta-D-thiogalactopyranoside, and methyl-beta-D-galactopyranoside, but possessed little or no affinity for glucose and lactose. The spatial configurations of hydroxyl groups at C-2, C-4, and C-6 were structurally important in facilitating interaction between the carrier and the sugar analog. Iodoacetate had no inhibitory effect on accumulation of galactose, methyl-beta-D-thiogalactopyranoside, or lactose via the phosphotransferase system. However, after exposure of the cells to p-chloromercuribenzoate, phosphoenolpyruvate-dependent uptake of lactose and methyl-beta-D-thiogalactopyranoside were reduced by 75 and 100%, respectively, whereas galactose phosphotransferase activity remained unchanged. The independent kinetic analysis of each transport system was achieved by the selective generation of the appropriate energy source (adenosine 5'-triphosphate or phosphoenolpyruvate) in vivo. The maximum rates of galactose transport by the two systems were similar, but the permease system exhibited a 10-fold greater affinity for sugar than did the phosphotransferase system.  相似文献   

18.
We reconstituted a protein translocation-transport system composed of permeabilized spheroplasts (P-cells) of the fission yeast Schizosaccharomyces pombe and the precursor of alpha sex pheromone, prepro-alpha-factor of the budding yeast Saccharomyces cerevisiae. We found that P-cells prepared from the spheroplasts formed in 0.7M KCl as an osmotic stabilizer had the activity to transport pro-alpha-factor to the Golgi apparatus. Electron microscopic observations showed that membranes were preserved more intact in the P-cells prepared from the spheroplasts formed in 0.7M KCl than in 0.7M sorbitol. A glycoprotein of S. pombe contains galactose residues, and we detected incorporation of radiolabeled galactose residues into the anti-prepro-alpha-factor immunoprecipitable fractions in this S. pombe system, but not in the S. cerevisiae system. This paper reports that a heterologous system of in vitro protein transport was performed, and prepro-alpha-factor has the signals necessary for early steps of the transport in S. pombe.  相似文献   

19.
Although Streptococcus thermophilus accumulated [14C]lactose in the absence of an endogenous energy source, galactose-fermenting (Gal+) cells were unable to accumulate [14C]galactose unless an additional energy source was added to the test system. Both Gal+ and galactose-nonfermenting (Gal-) strains transported galactose when preincubated with sucrose. Accumulation was inhibited 50 or 95% when 10 mM sodium fluoride or 1.0 mM iodoacetic acid, respectively, was added to sucrose-treated cells, indicating that ATP was required for galactose transport activity. Proton-conducting ionophores also inhibited galactose uptake, although N,N'-dicyclohexyl carbodiimide had no effect. The results suggest that galactose transport in S. thermophilus occurs via an ATP-dependent galactose permease and that a proton motive force is involved. The galactose permease in S. thermophilus TS2b (Gal+) had a Km for galactose of 0.25 mM and a Vmax of 195 micromol of galactose accumulated per min per g (dry weight) of cells. Several structurally similar sugars inhibited galactose uptake, indicating that the galactose permease had high affinities for these sugars.  相似文献   

20.
A study has been made to test if in intact epithelium of rat jejunum with in vivo and in vitro techniques, two transport systems for glucose and analogues, as those characterized in brush border membrane vesicles from guinea pig jejunum, are operative. The passive and mediated transport components of the D-galactose and methyl alpha-D-glucopyranoside intestinal absorption and the mutual inhibitions between both substrates at different relative concentrations have been measured. The effects of cytochalasin B and low temperature (20 degrees C) on the transport in vitro have also been observed. Cytochalasin B inhibits galactose and alpha-methylglucoside transport at 0.1 and 40 mM concentrations in similar percentage. Transport of 0.1 and 40 mM galactose is inhibited 61 and 77% respectively by low temperature (20 degrees C). The transport of galactose and alpha-methylglucoside could be explained by the assumption of just one transport system shared by both substrates, with a higher affinity for alpha-methylglucoside. Operation of two systems was not demanded by the results, due perhaps to species specificity or to the distorting action of the unstirred water layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号