首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival and induction of the SOS system by 5-azacytidine, an analog of cytidine, were studied in Escherichia coli K-12. This compound did not produce any effect on the viability of dcm and dam dcm mutants. Furthermore, recA430 and lexA1 strains (both mutations interfere with LexA repressor cleavage but not recombination proficiency) were more resistant than the wild-type strain of E. coli K-12. In contrast, recBC and recA13 mutants were more sensitive to 5-azacytidine than the wild type. Transient exposure of E. coli to 5-azacytidine for 60 min induced both recA-dependent inhibition of cell division and induction of lambda prophage in Dcm+ strains but not in Dcm- mutants. Expression of both functions was dependent on recBC exonuclease. On the other hand, 5-azacytidine was unable to trigger the induction of umuCD and mucB genes and no amplification of RecA protein synthesis in either Dcm+ or Dcm- strains was observed. These last results are in agreement with previously reported data suggesting that there is a discrimination in the expression of the several SOS functions and that some SOS genes may be induced without amplification of RecA protein synthesis.  相似文献   

2.
Escherichia coli cells with mutations in recBC genes are defective for the main RecBCD pathway of recombination and have severe reductions in conjugational and transductional recombination, as well as in recombinational repair of double-stranded DNA breaks. This phenotype can be corrected by suppressor mutations in sbcB and sbcC(D) genes, which activate an alternative RecF pathway of recombination. It was previously suggested that sbcB15 and DeltasbcB mutations, both of which inactivate exonuclease I, are equally efficient in suppressing the recBC phenotype. In the present work we reexamined the effects of sbcB15 and DeltasbcB mutations on DNA repair after UV and gamma irradiation, on conjugational recombination, and on the viability of recBC (sbcC) cells. We found that the sbcB15 mutation is a stronger recBC suppressor than DeltasbcB, suggesting that some unspecified activity of the mutant SbcB15 protein may be favorable for recombination in the RecF pathway. We also showed that the xonA2 mutation, a member of another class of ExoI mutations, had the same effect on recombination as DeltasbcB, suggesting that it is an sbcB null mutation. In addition, we demonstrated that recombination in a recBC sbcB15 sbcC mutant is less affected by recF and recQ mutations than recombination in recBC DeltasbcB sbcC and recBC xonA2 sbcC strains is, indicating that SbcB15 alleviates the requirement for the RecFOR complex and RecQ helicase in recombination processes. Our results suggest that two types of sbcB-sensitive RecF pathways can be distinguished in E. coli, one that is activated by the sbcB15 mutation and one that is activated by sbcB null mutations. Possible roles of SbcB15 in recombination reactions in the RecF pathway are discussed.  相似文献   

3.
Hydroxyurea at concentrations higher than 10(-2) M induced the recA and sfiA genes of E. coli as well as the lambda prophage by a pathway independent of the recBC genes. In addition, the hydroxyurea-mediated induction of the SOS response is accompanied by a recA-dependent decrease on the cellular ATP pool. The presence of the multicopy plasmid pPS2, harboring the nrdAB genes (encoding the ribonucleoside reductase enzyme), abolished the hydroxyurea-induced expression of the recA gene. These data lead us to suggest that induction of the SOS response by hydroxyurea is due to the blocking of DNA replication by the inhibition of the ribonucleoside reductase complex activity.  相似文献   

4.
The RecF pathway catalyzes generalized recombination in Escherichia coli that is mutant for recBC, sbcB and sbcC. This pathway operating on conjugational recombination requires the recA, recF, recJ, recN, recO, recQ, recR, ruvA, ruvB and ruvC genes. In contrast, lambda mutant for its own recombination genes, int, red alpha and red beta, requires only the recA and recJ genes to recombine efficiently in recBC sbcB sbcC cells. Deletion of an open reading frame in the ninR region of lambda results in an additional requirement for recO, recR and recF in order to recombine in recBC sbcB sbcC mutant cells. This function, designated orf for recO-, recR- and recF-like function, is largely RecF pathway specific.  相似文献   

5.
Orientation Dependence in Homologous Recombination   总被引:2,自引:1,他引:1       下载免费PDF全文
Homologous recombination was investigated in Escherichia coli with two plasmids, each carrying the homologous region (two defective neo genes, one with an amino-end deletion and the other with a carboxyl-end deletion) in either direct or inverted orientation. Recombination efficiency was measured in recBC sbcBC and recBC sbcA strains in three ways. First, we measured the frequency of cells carrying neo(+) recombinant plasmids in stationary phase. Recombination between direct repeats was much more frequent than between inverted repeats in the recBC sbcBC strain but was equally frequent in the two substrates in the recBC sbcA strain. Second, the fluctuation test was used to exclude bias by a rate difference between the recombinant and parental plasmids and led to the same conclusion. Third, direct selection for recombinants just after transformation with or without substrate double-strand breaks yielded essentially the same results. Double-strand breaks elevated recombination in both the strains and in both substrates. These results are consistant with our previous findings that the major route of recombination in recBC sbcBC strains generates only one recombinant DNA from two DNAs and in recBC sbcA strains generates two recombinant DNAs from two DNAs.  相似文献   

6.
The Escherichia coli helD (encoding helicase IV) and uvrD (encoding helicase II) genes have been deleted, independently and in combination, from the chromosome and replaced with genes encoding antibiotic resistance. Each deletion was verified by Southern blots, and the location of each deletion was confirmed by P1-mediated transduction. Cell strains containing the single and double deletions were viable, indicating that helicases II and IV are not essential for viability. Cell strains lacking helicase IV (delta helD) exhibited no increase in sensitivity to UV irradiation but were slightly more resistant to methyl methanesulfonate (MMS) than the isogenic wild-type cell strain. As expected, cell strains containing the helicase II deletion (delta uvrD) were sensitive to both UV irradiation and MMS. The introduction of the helicase IV deletion into a delta uvrD background had essentially no effect on the UV and MMS sensitivity of the cell strains analyzed. The double deletions, however, conferred a Rec- mutant phenotype for conjugational and transductional recombination in both recBC sbcB(C) and recBC sbcA backgrounds. The Rec- mutant phenotype was more profound in the recBC sbcB(C) background than in the recBC sbcA background. The recombination-deficient phenotype indicates the direct involvement of helicase II and/or helicase IV in the RecF pathway [recBC sbcB(C) background] and RecE pathway (recBC sbcA background) of recombination. The modest decrease in the recombination frequency observed in single-deletion mutants in the recBC sbcB(C) background suggests that either helicase is sufficient. In addition, helicase IV has been overexpressed in a tightly regulated system. The data suggest that even modest overexpression of helicase IV is lethal to the cell.  相似文献   

7.
The molecular mechanisms of the RecBC and RecF pathways for genetic recombination in E. coli were investigated by studying the kinetics of RecA protein function during conjugation. RecF recombination in recBC sbcB mutants is shown to be a much slower process than RecBC recombination in recBC+ sbcB+ strains, and is blocked by a mutation in lexA that prevents induction of RecA protein. Progress of the RecF pathway is greatly accelerated by a recAoc mutation which increases synthesis of RecA protein, but this does not restore recombination proficiency to a recBC sbcB lexA mutant. These results are interpreted to suggest that the RecF pathway directs integration of single-stranded Hfr DNA into the recipient chromosome whereas the RecBC pathway catalyses the exchange of largely double stranded DNA. This is consistent with the known stoichiometry of RecA protein catalysed heteroduplex DNA formation in vitro and with the delayed replication of RecF pathway recombinants which approximates to the time required for one round of DNA replication to generate homoduplex DNA. The regulation of the RecF pathway by lexA repressor is discussed in relation to the factors that govern the relative utilization of the two recombination pathways in wild-type cells.  相似文献   

8.
M. J. Mahan  J. R. Roth 《Genetics》1989,121(3):433-443
The role of recBC functions has been tested for three types of chromosomal recombination events: (1) recombination between direct repeats to generate a deletion, (2) recombination between a small circular fragment and the chromosome, and (3) recombination between inversely oriented repeats to form an inversion. Deletion formation by recombination between direct repeats, which does not require a fully reciprocal exchange, is independent of recBC function. Circle integration and inversion formation are both stimulated by the recBC function; these events require full reciprocality. The results suggest that half-reciprocal exchanges can occur without recBC, but recBC functions greatly stimulate completion of a fully reciprocal exchange. We propose that chromosomal recombination is a two-step process, and recBC functions are primarily required for the second step.  相似文献   

9.
The RuvABC proteins of Escherichia coli play an important role in the processing of Holliday junctions during homologous recombination and recombinational repair. Mutations in the ruv genes have a moderate effect on recombination and repair in wild-type strains but confer pronounced recombination deficiency and extreme sensitivity to DNA-damaging agents in a recBC sbcBC background. Genetic analysis presented in this work revealed that the (Delta)ruvABC mutation causes an identical DNA repair defect in UV-irradiated recBC sbcBC, sbcBC, and sbcB strains, indicating that the sbcB mutation alone is responsible for the extreme UV sensitivity of recBC sbcBC ruv derivatives. In experiments with gamma irradiation and in conjugational crosses, however, sbcBC (Delta)ruvABC and sbcB (Delta)ruvABC mutants displayed higher recombination proficiency than the recBC sbcBC (Delta)ruvABC strain. The frequency of conjugational recombination observed with the sbcB (Delta)ruvABC strain was quite similar to that of the (Delta)ruvABC single mutant, indicating that the sbcB mutation does not increase the requirement for RuvABC in a recombinational process starting from preexisting DNA ends. The differences between the results obtained in three experimental systems used suggest that in UV-irradiated cells, the RuvABC complex might act in an early stage of recombinational repair. The results of this work are discussed in the context of recent recombination models which propose the participation of RuvABC proteins in the processing of Holliday junctions made from stalled replication forks. We suggest that the mutant SbcB protein stabilizes these junctions and makes their processing highly dependent on RuvABC resolvase.  相似文献   

10.
Events following prophage Mu induction.   总被引:13,自引:2,他引:11       下载免费PDF全文
Escherichia coli strains lysogenic for a thermoinducible Mu prophage (Mu cts62) undergo rapid lysis about 50 min after heat induction. Induction of Mu cts62 apparently causes damage to the host sequences in which Mu is inserted. The normal expression of A, BU, and X genes of Mu is needed for this specific deleterious effect on the prophage-containing host sequences. Mu deoxyribonucleic acid can be shown to reintegrate extensively at different sites on the host genome during the lytic cycle after prophage induction or after infection of sensitive cells by clear-plaque mutants of Mu. We estimate that approximately 10 copies of Mu deoxyribonucleic acid are inserted per chromosome during vegetative growth. The episome rescue method for detecting vegetative Mu deoxyribonucleic acid insertion, in which an episome is transferred from the lytically infected cells to F- receipient cells, can be applied to study Mu integration without requiring the host cells to survive. It also provides an easy system to isolate Mu insertions in transmissible episomes and plasmids.  相似文献   

11.
Lethality of rep recB and rep recC double mutants of Escherichia coli   总被引:4,自引:1,他引:3  
A rep mutation in combination with a recB or a recC mutation renders Escherichia coli non-viable. This conclusion is based on the following lines of evidence: (i) double mutants cannot be constructed by P1 transduction; (ii) induction of the λ Gam protein, which inactivates most of the RecBCD activities, is lethal in rep mutants; (iii) rep recBts recCts mutants are not viable at high temperature. The reasons for a requirement for the RecBCD enzyme in rep strains were investigated. Initiation of chromosome replication, elongation and chromosomal segregation do not seem impaired in the rep recBts recCts mutant at the non-permissive temperature. The viability of other rep derivatives was tested. rep recA recD triple mutants are not viable, whereas rep recD and rep recA double mutants are. Inactivation of both exoV activity and recBC -dependent homologous recombination is therefore responsible for the non-viability of rep recBC strains. However, sbcA and sbcB mutations, which render recBC mutants recombination proficient, do not restore viability of rep recBC mutants, indicating that recombination via the RecF or the RecE pathways cannot functionally replace RecBCD-mediated recombination. The specific requirement for RecBCD suggests the occurrence of double-strand DNA breaks in rep strains. Additional arguments in favour of the presence of DNA lesions in rep mutants are as follows: (i) expression of SOS repair functions delays lethality of rep derivatives after inactivation of RecBCD; (ii) sensitivity of rep strains to ultraviolet light is increased by partial inactivation of RecBCD. A model for the recovery of cells from double-strand breaks in rep mutants is discussed.  相似文献   

12.
The host-vector system for efficient expression of the cloned genes under the control of transactivated promoter p'R of bacteriophage lambda has been elaborated. The Q protein activating p'R promoter is coded by the defective prophage constructed in vitro by means of excision of the late phage genes between the distant sites of the restriction endonuclease MluI and change of the central SalI fragment carrying the kill gene for the kanamycin resistance gene. The general recombination system is impaired during the change, thus the bacteriophage DNA can be obtained from the induced RecA cells as a plasmid DNA. The induction of the prophage results in a sharp increase of beta-lactamase synthesis (30% of soluble cell protein) under the control of p'R promoter in a plasmid derived of pBR322.  相似文献   

13.
Transient exposure of lysogenic Escherichia coli cells to small alcohols stimulated the frequency of mutations suppressing the lethal loss of replication control from a prophage fragment of bacteriophage lambda. The stimulation in mutation frequency paralleled the effect of mutagenic agents, and in this sense the alcohols behaved as mutagens. 10-min treatments above distinct threshold concentrations at 23%, 18%, 10% and 4% (v/v) were required in order for methanol, ethanol, isopropanol and propanol to evoke mutagenic effects. The selected mutant cells were, in general, equally or more sensitive to ethanol than the starting cells. The mutagenicity of methanol and ethanol was detected only with E. coli strains with lambda fragments that included the site-specific and general recombination genes found within the phage int-kil gene interval; whereas, stimulation of the frequency of phenotypically identical mutations by nitrosoguanidine or ionizing radiation did not require that the lambda fragment encode these genes. Treatments of lysogenic cells with mutagenic concentrations of ethanol did not trigger prophage induction and were concluded not to induce a cellular SOS response nor to denature the prophage repressor, or to disrupt repressor-operator binding. The toxicity of ethanol was pH-dependent. Cellular sensitivity to ethanol toxicity was unaffected by the integrated lambda fragment(s) or by an intact lambda prophage; but, it was increased by deletions of the E. coli chromosome extending rightward from bio into uvrB, and rightward from chlA.  相似文献   

14.
To measure cisplatin (cis-diaminodichloroplatinum(II))-induced recombination, we have used a qualitative intrachromosomal assay utilizing duplicate inactive lac operons containing non-overlapping deletions and selection for Lac+ recombinants. The two operons are separated by one Mb and conversion of one of them yields the Lac+ phenotype. Lac+ formation for both spontaneous and cisplatin-induced recombination requires the products of the recA, recBC, ruvA, ruvB, ruvC, priA and polA genes. Inactivation of the recF, recO, recR and recJ genes decreased cisplatin-induced, but not spontaneous, recombination. The dependence on PriA and RecBC suggests that recombination is induced following stalling or collapse of replication forks at DNA lesions to form double strand breaks. The lack of recombination induction by trans-DDP suggests that the recombinogenic lesions for cisplatin are purine-purine intrastrand crosslinks.  相似文献   

15.
Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host''s chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excisive recombination are discussed.  相似文献   

16.
17.
Many species of bacteria harbor multiple prophages in their genomes. Prophages often carry genes that confer a selective advantage to the bacterium, typically during host colonization. Prophages can convert to infectious viruses through a process known as induction, which is relevant to the spread of bacterial virulence genes. The paradigm of prophage induction, as set by the phage Lambda model, sees the process initiated by the RecA-stimulated self-proteolysis of the phage repressor. Here we show that a large family of lambdoid prophages found in Salmonella genomes employs an alternative induction strategy. The repressors of these phages are not cleaved upon induction; rather, they are inactivated by the binding of small antirepressor proteins. Formation of the complex causes the repressor to dissociate from DNA. The antirepressor genes lie outside the immunity region and are under direct control of the LexA repressor, thus plugging prophage induction directly into the SOS response. GfoA and GfhA, the antirepressors of Salmonella prophages Gifsy-1 and Gifsy-3, each target both of these phages' repressors, GfoR and GfhR, even though the latter proteins recognize different operator sites and the two phages are heteroimmune. In contrast, the Gifsy-2 phage repressor, GtgR, is insensitive to GfoA and GfhA, but is inactivated by an antirepressor from the unrelated Fels-1 prophage (FsoA). This response is all the more surprising as FsoA is under the control of the Fels-1 repressor, not LexA, and plays no apparent role in Fels-1 induction, which occurs via a Lambda CI-like repressor cleavage mechanism. The ability of antirepressors to recognize non-cognate repressors allows coordination of induction of multiple prophages in polylysogenic strains. Identification of non-cleavable gfoR/gtgR homologues in a large variety of bacterial genomes (including most Escherichia coli genomes in the DNA database) suggests that antirepression-mediated induction is far more common than previously recognized.  相似文献   

18.
DNA helicases play pivotal roles in homologous recombination and recombinational DNA repair. They are involved in both the generation of recombinogenic single-stranded DNA ends and branch migration of synapsed Holliday junctions. Escherichia coli helicases II (uvrD), IV (helD), and RecQ (recQ) have all been implicated in the presynaptic stage of recombination in the RecF pathway. To probe for functional redundancy among these helicases, mutant strains containing single, double, and triple deletions in the helD, uvrD, and recQ genes were constructed and examined for conjugational recombination efficiency and DNA repair proficiency. We were unable to construct a strain harboring a delta recQ delta uvrD double deletion in a recBC sbcB(C) background (RecF pathway), suggesting that a delta recQ deletion mutation was lethal to the cell in a recBC sbcB(C) delta D background. However, we were able to construct a triple delta recQ delta uvrD Delta helD mutant in the recBC sbcB(C) background. This may be due to the increased mutator frequency in delta uvrD mutants which may have resulted in the fortuitous accumulation of a suppressor mutation(s). The triple helicase mutant recBC sbcB(C) delta uvrD delta recQ delta helD severely deficient in Hfr-mediated conjugational recombination and in the repair of methylmethane sulfonate-induced DNA damage. This suggests that the presence of at least one helicase--helicase II, RecQ helicase, or helicase IV--is essential for homologous recombination and recombinational DNA repair in a recBC sbcB(C) background. The triple helicase mutant was recombination and repair proficient in a rec+ background. Genetic analysis of the various double mutants unmasked additional functional redundancies with regard to conjugational recombination and DNA repair, suggesting that mechanisms of recombination depend both on the DNA substrates and on the genotype of the cell.  相似文献   

19.
A study was made of the influence of the repair genotype on lambda prophage induction by ionizing radiation of different LET in lysogenic E. coli cells. Bacterial strains W3110, P3478, GC244, and 30SO were exposed to gamma-rays and helium ions of 22 keV/microns. Induction of the prophage in GC244 and 30SO strains deficient by lexA and recA genes was either inhibited (GC244) or lacking (30SO). Inducibility of P3478 carrying polA mutation was 12 and 5 times as high as that of the wild type strain after exposure to gamma-radiation and helium ions, respectively.  相似文献   

20.
Heterozygous tandem duplications that appear in Escherichia coli conjugation matings segregate different types of haploid and diploid recombinants because of unequal crossing over between sister chromosomes. As shown previously, the frequency of segregants in the extended duplication D104 (approximately 150 kb or more than 3 min of the genetic map) heterozygous for E. coli deo-operon genes (deoA deoB::Tn5/deoC deoD) is not decreased in strains with defective RecBCD and RecF recombination pathways. Analysis of a shorter duplication of this type (approximately 46 kb) showed that the frequency of segregants in the strain recBC sbcBC recF was similar to that in a strain with undamaged system of recombination. Thus, genetic exchange between direct DNA repeats in tandem duplications may follow a special pathway of homologous recombination, which is independent of the recBC and recF genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号