首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First successful in vitro synthesis of functional photosynthetic phosphorylating membrane is reported. Etioplasts, highly enriched in cytoplasmic and plastid proteins, isolated from etiolated Cucumber cotyledons pretreated with kinetin and gibberellic acid, and illuminated in a cofactor fortified medium showed commencement of chlorophyll (Chl) synthesis immediately after illumination from exogenous δ-aminolevulinic acid, while photosystem I (PS I) activity commenced 15 min after the onset of illumination. When cotyledons pretreated with kinetin and gibberellic acid were illuminated directly, there was a lag phase of 30 min before the commencement of Chl synthesis and PS I activity developed after 1 h of illumination. In plastids developed both in vivo and in vitro, the electron flow from dichlorophenolindophenol to methyl-viologen was coupled to phosphorylation as observed by an increase in the electron transport rate on the addition of uncouplers. Analysis of polypeptide profiles of the greening plastids in vitro showed the disappearance of many higher molecular weight proteins during greening. Polypeptides of molecular weight 32, 20.5, 19.5 K absent in etioplasts appeared as distinct bands after 4 h of greening in vitro.  相似文献   

2.
Varying doses of morphine sulfate (10, 20 or 40 mg/kg daily × 10) were observed to suppress metabolic activities in the mouse prostate gland. Prostate gland fructose, an index of androgenic activity, was significantly reduced by these dose regimes of morphine (P < 0.01). Injections of morphine sulfate (20 mg/kg daily × 10) led to an inhibitition in the in vitro synthesis of both fructose?14C and sorbitol?14C from glucose?14C by the prostate gland, part of which may have been due to decreased uptake of glucose by the gland. The in vitro assimilation of 2-deoxyglucose?14C by the prostate was also reduced by morphine treatment. The in vitro actions of morphine (2 × 10?3M) on the metabolism of radioactive glucose by the mouse prostate gland likewise revealed a significant reduction in the formation of sorbitol?14C, but no decrease in fructose?14C formation. These results indicate that both the in vitro and in vivo actions of morphine can inhibit fructose metabolism in the prostate gland.  相似文献   

3.
The adenine nucleotide translocase, the transport protein for ADP and ATP, located in the inner mitochondrial membrane is an important site for the regulation of cell metabolism. Inhibition of the adenine nucleotide translocase by long chain fatty acyl CoA esters demonstrated invitro may also occur invivo when the complete oxidation of fatty acids by the myocardium has been compromised during ischemia. Reversal of this biochemical lesion may be of benefit in the preservation of the ischemic myocardium.  相似文献   

4.
Administration of the carcinogenic methylating agent, methylnitrosourea, to rats caused a significant increase in endogenous DNA synthesis assayed subsequently in isolated hepatic nuclei invitro. DNA synthesis was related directly to the dose of carcinogen and inversely to the interval between treatment and isolation of nuclei. This synthesis appears to represent the continuation invitro of unscheduled, reparative DNA synthesis initiated in damaged cells invivo.  相似文献   

5.
The effects of experimentally induced diabetes on the conversion of glucose to lipid in the isolated perfused rat lung were examined. Alloxan diabetes and streptozotocin diabetes reduced the incorporation of glucose into the neutral lipid and phospholipid fractions of the lung to a rate less than 40% of that observed in normal animals. This phenomenon appears to be related to insulin deficiency as lungs from diabetic rats treated for one week with insulin were capable of incorporating glucose at a rate comparable to that observed in normal animals. While insulin invivo altered lipid metabolism in perfused lung, invitro insulin had no demonstrable effect on lipid metabolism in the perfused lung, an indication that the effects of the hormone may be long term rather than short term. These data indicate that pulmonary lipid metabolism may be regulated by the action of insulin.  相似文献   

6.
The effect of chronic feeding of ethyl-α-p-chlorophenoxyisobutyrate (clofibrate, CPIB) upon alcohol metabolism has been examined. Clofibrate stimulated both ethanol and methanol oxidation in vivo and in vitro, differences which were sensitive to 3-amino-1,2,4-triazole, a catalase inhibitor, but not to pyrazole, an inhibitor of alcohol dehydrogenase. These studies suggest that the increased alcohol oxidation associated with clofibrate feeding is related, at least in part, to increased catalatic peroxidation.  相似文献   

7.
The effects of imidazole, 1-methyl-imidazole and benzimidazole on bone metabolism in vitro were investigated. The relative potencies of these compounds with respect to the inhibition of bone resorption was found to be comparable to their relative effectiveness as inhibitors of platelet microsome thromboxane synthetase activity. Since studies by others have shown that thromboxanes are produced by resorbing bone in vitro, these results suggest that the inhibition of bone resorption by imidazole is related to the inhibition of thromboxane A2 formation. This could imply that thromboxane A2 is an additional arachidonic acid oxidation product that is of importance in the regulation of bone metabolism.  相似文献   

8.
Quipazine, 2-(1-piperazinyl)-quinoline, is a drug that has been reported to stimulate serotonin receptors in brain. We therefore studied the effect of quipazine on several parameters of serotonin metabolism in rat brain. Quipazine caused a slight, dose-related elevation of serotonin levels and decrease in 5-hydroxyindoleacetic acid levels for 2–4 hrs after it was administered. The decrease in 5-hydroxyindoleacetic acid levels was probably due primarily to a depression of 5-hydroxyindole synthesis, since quipazine also decreased the rate of 5-hydroxytryptophan accumulation after NSD 1015, the rate of serotonin decline after α-propyldopacetamide, and the rate of 5-hydroxyindoleacetic acid accumulation after probenecid. The elevation of serotonin was probably due to weak inhibition of monoamine oxidase. Quipazine reversibly inhibited the oxidation of serotonin by rat brain monoamine oxidase invitro and protected against the irreversible inactivation of the enzyme invivo. Quipazine also was a potent inhibitor of serotonin uptake into brain synaptosomes invitro and attained concentrations in brain higher than the invitro IC50. However, quipazine did not prevent the depletion of brain serotonin by p-chloroamphetamine invivo. In addition to stimulating serotonin receptors in brain, quipazine may inhibit monoamine oxidase and serotonin reuptake invivo.  相似文献   

9.
The effects of treating nitrogen-starved cultures of Escherichia coli W4597 (K) with various doses of 2,4-dinitrophenol include increases in the rates of glucose utilization, decreases in ATP and glucose-6-P and maintenance of the level of fructose-1, 6-P2. A quantitative correlation was observed between the increases in the rates of glucose utilization and decreases in glucose-6-P in agreement with the observation made in vitro that glucose-6-P inhibits glucose transport in E. coli. A quantitative correlation was also observed between glucose-6-P and ATP indicating that the fall in glucose-6-P is effected by the fall in ATP which indirectly signals increased glucose utilization and increased ATP production.  相似文献   

10.
J T Stevens  F E Greene 《Life sciences》1973,13(12):1677-1691
Invitro inhibition of ethylmorphine metabolism in rat hepatic microsomes by parathion, malathion, malaoxon and paraoxon was not well correlated with their effects on NADPH oxidation, cytochrome C reduction or the reduction of cytochrome P-450. A parallel relationship was observed between inhibition of ethylmorphine metabolism by parathion, malathion and malaoxon and the binding affinity of these agents to microsomal cytochrome P-450 obtained from rats pretreated with an anticholinesterase agent, Bis-[?-nitrophenol] phosphate.  相似文献   

11.
Preovulatory follicles isolated from immature rats, treated in vivo with pregnant mare's serum gonadotropin, were incubated in vitro and the accumulation of prostaglandin E measured. The addition of luteinizing hormone (5 μg/ml) increased this accumulation, after a lag period of 3 hours. This delay suggested the involvement of macromolecular synthesis in the mechanism of prostaglandin stimulation by luteinizing hormone. When the synthesis of protein was inhibited by the addition of puromycin (100 μM), the luteinizing hormone stimulation of prostaglandin E in these follicles was completely abolished. This inhibition was not seen with an analogue of puromycin, which does not inhibit protein synthesis, puromycin amino-nucleoside. These data suggest that concomitant protein synthesis is required for the luteinizing hormone stimulation of prostaglandin accumulation in rat follicles.  相似文献   

12.
Ethanol metabolism was studied in isolated hepatocytes of fed and fasted guinea pigs. Alcohol dehydrogenase (EC 1.1.1.1) activities of fed or fasted liver cells were 2.04 and 1.88 μmol/g cells/min, respectively. Under a variety of in vitro conditions, alcohol dehydrogenase operates in fed hepatocytes at 34–74% and in fasted liver cells at 23–61% of its maximum velocity, respectively. Hepatocytes of fed animals, incubated in Krebs-Ringer bicarbonate buffer, oxidized ethanol at an average rate of 0.69 μmol/g wet weight cells/min, whereas cells of 48-h fasted animals consumed only 0.44 μmol/g/min under identical conditions. Various substrates and metabolites of intermediary metabolism significantly enhanced ethanol oxidation in fed liver cells. Maximum stimulatory effects were achieved with alanine (+138%) and pyruvate (+102%), followed in decreasing order by propionate, lactate, fructose, dihydroxyacetone, and galactose. In contrast to substrate couples such as lactate/pyruvate and glycerol/dihydroxyacetone, sorbitol with or without fructose significantly inhibited ethanol oxidation. The addition of hydrogen shuttle components such as malate, aspartate, or glutamate to fasted hepatocytes resulted in significantly higher stimulation of ethanol uptake than in fed hepatocytes. Also, the degree of inhibition of shuttle activity by n-butylmalonate was more pronounced in fasted liver cells (77% inhibition) than in fed cells (59% inhibition). These data as well as oxygen kinetic studies in intact guinea pig hepatocytes utilizing uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, dinitrophenol), electron-transport inhibitors (rotenone, antimycin), and malate-aspartate shuttle inhibitors (aminooxyacetate, n-butylmalonate) strongly suggested that the malate-aspartate shuttle is the predominant hydrogen transport system during ethanol oxidation in guinea pig liver.Comparison of the alcohol dehydrogenase-inhibitors 4-methylpyrazole and pyrazole on ethanol oxidation demonstrated that the alcohol dehydrogenase system is quantitatively the most important alcohol-metabolizing pathway in guinea pig liver. Supporting this conclusion, it was found that the H2O2-forming substrate glycolate slightly increased ethanol oxidation in liver cells of control animals (+26%), but prior inhibition of catalase by 3-amino-1,2,4-triazole resulted in a significant increase (+25%) instead of a decrease in alcohol oxidation. This finding does not support a quantitatively important role of peroxidatic oxidation of ethanol by catalase in liver.Cytosolic NADNADH ratios were greatly shifted toward reduction during ethanol oxidation. These reductive shifts were even more pronounced when cells were incubated in the presence of fatty acids (octanoate, oleate) plus ethanol. Inhibitor studies with 4-methylpyrazole demonstrated that the decrease of the cytosolic NADNADH ratio during fatty acid oxidation was due to an inhibition of hydrogen transport from cytosol to mitochondria and not the result of transfer of hydrogen, generated by fatty acid oxidation, from mitochondria to cytosol. Lactate plus pyruvate formation was slightly inhibited by ethanol in fed hepatocytes but greatly accelerated in fasted cells; this latter effect was mostly the result of increased lactate formation. Such regulation may represent a hepatic mechanism of alcoholic lactic acidosis as observed in human alcoholics. The ethanol-induced decrease of the mitochondrial NADNADH ratio was prevented by addition of 4-methylpyrazole. Endogenous ketogenesis was greatly increased (+80%) by ethanol in fed liver cells. This effect of ethanol was blunted in the presence of glucose. Propionate, by competing with fatty acid oxidation, was strongly antiketogenic. This effect was alleviated by ethanol. In 48-h fasted hepatocytes, endogenous ketogenesis was enhanced by 84%. Although ethanol did not further stimulate endogenous ketogenesis under these conditions, alcohol significantly increased ketogenesis in the presence of octanoate or oleate. This stimulatory effect of ethanol was almost completely prevented by 4-methylpyrazole. These findings demonstrate that the syndrome of alcoholic ketoacidosis may be due, at least partially, to the additional stimulation of ketogenesis by or from ethanol during fatty acid oxidation in the fasting state.  相似文献   

13.
The effects of Cloprostenol administration on porcine luteal lipid and arachidonic acid accumulation were examined in relation to luteal in vitro progesterone and prostaglandin F synthesis in 18 mature gilts at day 12 of the estrous cycle. Basal and net in vitro release of progesterone from luteal tissue was depressed at 8 hr after treatment whereas net in vitro release of prostaglandin F was elevated at 8 hr. Inclusion of copper dithiothreitol or reduced glutathione in the incubation media resulted in minor alterations of in vitro release of progesterone and prostaglandin F and no changes in composition of luteal lipids or fatty acids. Luteal contents of triglyceride had increased by 8 hr after treatment whereas contents of free and esterified cholesterols had increased by 32 hr after Cloprostenol administration. Luteal contents of phospholipid and free fatty acids were not affected by Cloprostenol administration. At 32 hr after treatment, percentages and content of arachidonic acid had increased in luteal cholesterol esters and triglycerides. Although arachidonic acid percentages increased in luteal free fatty acids and phospholipids, calculated arachidonic acid contents did not change following Cloprostenol administration. Induced luteal regression was associated with decreased in vitro progesterone release, increased in vitro prostaglandin F release, and accelerated lipid and arachidonic acid accumulation within the corpus luteum. The effects of altered lipid metabolism on release of prostaglandin F could not be defined. However, availability of arachidonic acid did not appear to be rate-limiting in relation to luteal in vitro prostaglandin F synthesis.  相似文献   

14.
In Escherichiacolian abrupt increase in the rate of glycogen synthesis occurs at the onset of total nitrogen starvation. We present here both invivo and invitro data indicating that this increase occurs because of the loss of a nitrogen-containing intermediate of purine biosynthesis (apparently 5-aminoimidazole-4-carboxamide ribonucleotide) that inhibits glycogen synthesis. We also show that this inhibitory intermediate antagonizes the stimulation of glycogen synthesis by 3′,5′-cyclic AMP. The uncovering of the regulation of glycogen synthesis by this inhibitor apparently provides the first link in understanding the 23-year-old observation of a reciprocal relationship between growth rate and glycogen accumulation in E.coli.  相似文献   

15.
A membranous ATPase unique to lysosomes   总被引:1,自引:0,他引:1  
Intracellular protein degradation presumably occurs in lysosomes and is known to require energy. ATP effects on proteolysis in lysosomes have been demonstrated in vitro and were attributed to transport of protons (1) or transport of proteins (2). Accordingly a lysosomal ATPase was anticipated and is reported herein. The membranous nature of the ATPase as well as its specific activity would seemingly warrant its consideration as the direct link between energy and protein catabolism. However, intact lysosomes display very little ATPase activity and there is no stimulation by uncoupler. Therefore the existence of an ATP-driven proton pump in lysosomes is improbable.  相似文献   

16.
Selective modulation of cellular arachidonic acid metabolism with thromboxane synthetase inhibitors temporarily reduced the yield of viruses hosted by human lung fibroblasts in vitro. The results were similar for several viruses including type I herpes simplex virus, vaccinia, vesicular stomatitis virus, chikungunya virus, and Newcastle disease virus. Thromboxane synthetase inhibitors of different structural classes were effective and their effects were confined to cells that contain the thromboxane synthetase. Virus yields were unaltered by total inhibition of arachidonic acid oxidative metabolism or exogenous addition of prostaglandins. In contrast to most cytopathic agents, viruses destroyed host cells without stimulating prostaglandin synthesis unless interferon induction accompanied the infection in vitro. The results suggest that cellular arachidonic acid metabolism may contribute to the host defense response during virus infections.  相似文献   

17.
Glycerol can be utilized by cultured cells of Novikoff rat hepatoma, Hela and HEP-2. Glucose inhibits the rate of glycerol uptake by the first two cell lines but stimulates the process in the third. The transport process of glycerol, particularly by its insensitivity to phloridzin, is distinguishable from that of glucose. The inhibitory effect of glucose on glycerol uptake which is competitive in nature is at the membrane transport and not phosphorylation step, since in vitro glycerol kinase is sensitive to neither glucose nor hexose phosphates.  相似文献   

18.
Livers from normal, adrenalectomized, and diabetic rats were perfused invitro in order to investigate the mode of action of insulin in the control of glycogenesis by glucose. Control of glycogen synthase and phosphorylase by glucose is completely lost in livers from 2 and 6 day alloxan diabetic rats. Three hour treatment of normal rats with anti-insulin serum results in a decrease in the effect of glucose on hepatic glycogenesis. Glucose infusion into isolated perfused livers from fed normal and adrenalectomized rats promotes an increase in glycogen synthase activation and phosphorylase inactivation. These data clearly demonstrate that the presence of insulin rather than glucocorticoids is an absolute requirement in the control of hepatic glycogen synthesis by glucose.  相似文献   

19.
Sulfate uptake by Saccharomyces cerevisiae is stimulated about 12-fold by preincubation of cells with 1% d-glucose or 1% ethanol. The KT remains unchanged (0.34–0.38 mM), the Jmar increase from 18–20 to 195–230 and 170–185 nmol/min per g dry wt., respectively, after glucose and ethanol preincubation. The stimulation involves protein synthesis (it is suppressed by cycloheximide), has a half-time of 18 min and requires mitochondrial respiration (no or low effect in respiration-deficient mutants and those lacking ADP-ATP transport in mitochondria, as well as after anaerobic preincubation of the wild-type strain, and in low-phosphate cells). The presence of NH4+ and some amino acids (e.g., leucine, aspartate, cysteine and methionine) depressed the stimulation while that of cationic amino acids (typically arginine and lysine) and of K+ increased it by 50–80%. The stimulated (i.e., newly synthesized) transport system was degraded with a half-life of about 10 min.  相似文献   

20.
The 15-azasteroid, 1,10,11,11a-tetrahydro-11a-methyl-2H naphth (1,2-g)indol-7-ol, inhibits the growth of the cell culture lines KB and L-M as well as several strains of bacteria. The inhibition of growth is reversed following removal of the steroid from the growth medium. Using in vitro grown L-M cells, the compound inhibited the transport of amino acids and uracil. The action was non-detergent like and at least 100 times more effective in terminating metabolite transport than sodium azide. The azasteroid inhibited the oxidation of glutamate in isolated rat liver mitochondria. The oxidation of succinate was not affected by the azasteroid alone but in the presence of glutamate, the azasteroid uncoupled the oxidation of succinate from the ADP-ATP control. It is suggested that the azasteroid may be acting directly on the electron transport system and/or acting indirectly through membrane perturbations which disrupts the electron transport process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号