首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Nitrotyrosine is a useful marker for nitric oxide-mediated tissue injury. However, which proteins are preferred peroxynitrite modification targets is unclear. Chondroitin sulfate proteoglycans (CSPGs) abnormally accumulate in cerebrospinal fluid of human neonates with hydrocephalus and may be a target for peroxynitrite modification. We examined (1). whether CSPG core protein can be modified by peroxynitrite in vitro; (2). to what degree in comparison to bovine serum albumin (BSA), the most commonly used nitrated protein standard; (3). whether nitrated CSPGs can be measured directly in biological samples; and (4). whether nitrated proteoglycan concentrations in cerebrospinal fluid correlate with disease. In vitro nitration of bovine aggrecan was performed by exposure to different peroxynitrite concentrations, and 3-nitrotyrosine products were measured. Bovine serum albumin (BSA) nitration was also performed in comparison. A larger percentage of tyrosine residues were nitrated in aggrecan than in BSA under all conditions tested. An enzyme-linked immunosorbent assay (ELISA) for 3-nitrotyrosine consistently overestimated aggrecan nitration when nitrated BSA was used as the standard. This is important as most current assays of nitration in biological samples use nitrated BSA as the standard. Therefore, if nitrated CPSGs were a substantial portion of the nitrated proteins in a sample, total nitrated protein content would be overestimated. Aggrecan retained its function of binding hyaluronic acid despite substantial nitration. A double-sandwich ELISA was developed for nitrated CSPGs in biological samples, using nitrated aggrecan as standard. [Nitrated CSPG] was found to be significantly elevated in preterm hydrocephalus cerebrospinal fluid (P<0.02), but correlated poorly with cerebrospinal fluid [nitric oxide] (P>0.069), suggesting that nitrated CSPG and NO levels may be independant markers of tissue injury. Peroxynitrite-mediated protein tyrosine nitration is a previously unrecognized modification of CSPGs, and may reflect level of brain injury in hydrocephalus.  相似文献   

2.
Reports of non-neural differentiation of neural stem cells (NSCs) have been challenged by alternative explanations for expanded differentiation potentials. In an attempt to demonstrate the plasticity of NSC, neurospheres were generated from single retrovirally labeled embryonic cortical precursors. In a defined serum-free insulin-containing media, 40% of the neurospheres contained both myogenic and neurogenic differentiated progeny. The number of NSCs displaying multilineage differentiation potential declines through gestation but does exist in the adult animal. In this system, insulin appears to function as a survival and dose-dependent myogenic differentiation signal for multilineage NSCs (MLNSC). MLNSC-derived cardiomyocytes contract synchronously, respond to sympathetic and parasympathetic stimulation, and regenerate injured heart tissues. These studies provide support for the hypothesis that MLNSCs exist throughout the lifetime of the animal, and potentially provide a population of stem cells for cell-based regenerative medicine strategies inside and outside of the nervous system.  相似文献   

3.
The behavior of cells is generally considered to be regulated by environmental factors, but the molecules in the milieu of neural stem cells have been little studied. We found by immunohistochemistry that chondroitin sulfate (CS) existed in the surroundings of nestin-positive cells or neural stem/progenitor cells in the rat ventricular zone of the telencephalon at embryonic day 14. Brain-specific chondroitin sulfate proteoglycans (CSPGs), including neurocan, phosphacan/receptor-type protein-tyrosine phosphatase beta, and neuroglycan C, were detected in the ventricular zone. Neurospheres formed by cells from the fetal telencephalon also expressed these CSPGs and NG2 proteoglycan. To examine the structural features and functions of CS polysaccharides in the milieu of neural stem cells, we isolated and purified CS from embryonic day 14 telencephalons. The CS preparation consisted of two fractions differing in size and extent of sulfation: small CS polysaccharides with low sulfation and large CS polysaccharides with high sulfation. Interestingly, both CS polysaccharides and commercial preparations of dermatan sulfate CS-B and an E-type of highly sulfated CS promoted the fibroblast growth factor-2-mediated proliferation of neural stem/progenitor cells. None of these CS preparations promoted the epidermal growth factor-mediated neural stem cell proliferation. These results suggest that these CSPGs are involved in the proliferation of neural stem cells as a group of cell microenvironmental factors.  相似文献   

4.
Although the local environment is known to regulate neural stem cell (NSC) maintenance in the central nervous system, little is known about the molecular identity of the signals involved. Chondroitin sulfate proteoglycans (CSPGs) are enriched in the growth environment of NSCs both during development and in the adult NSC niche. In order to gather insight into potential biological roles of CSPGs for NSCs, the enzyme chondroitinase ABC (ChABC) was used to selectively degrade the CSPG glycosaminoglycans. When NSCs from mouse E13 telencephalon were cultivated as neurospheres, treatment with ChABC resulted in diminished cell proliferation and impaired neuronal differentiation, with a converse increase in astrocytes. The intrauterine injection of ChABC into the telencephalic ventricle at midneurogenesis caused a reduction in cell proliferation in the ventricular zone and a diminution of self-renewing radial glia, as revealed by the neurosphere-formation assay, and a reduction in neurogenesis. These observations suggest that CSPGs regulate neural stem/progenitor cell proliferation and intervene in fate decisions between the neuronal and glial lineage.  相似文献   

5.
In mammalian cells, 8-oxoguanine DNA glycosylase-1 (OGG1) is the main DNA glycosylase for the removal of 8-oxoguanine (8-oxoG). 8-oxoG, one of the most common products of the oxidative attack of DNA, is a premutagenic lesion that accumulates spontaneously at high frequencies in the genome. In this study, Ogg1 mRNA expression was detected throughout embryonic development in mice. In situ hybridization showed that in the neonatal brain, Ogg1 expression was detected in a distinct layer of cells in the medial wall of the lateral ventricle, which may correspond to ependymal cells, and in some scattered cells in the subventricular zone (SVZ), a brain region rich in neural stem/progenitor cells. Using neurospheres as a model for the study of neural stem/progenitor cells, we found that both the expression and activity of Ogg1 were high in neurospheres derived from newborn mice and decreased in adults and upon induction of cell differentiation. Furthermore, Ogg1 was shown to be the major DNA glycosylase initiating 8-oxoG repair in neurospheres. Our results strongly indicate that enhanced DNA repair capacity is an important mechanism by which neural stem/progenitor cells maintain their genome.  相似文献   

6.
Neural stem cells (NSCs) can be isolated from nervous tissues or derived from embryonic stem cells. However, their procurement for clinical applications is limited, and there is a need for alternative types of cell that have NSCs properties. In the present study, the differentiation potential of rat adipose-derived stem cells (ADSCs) was evaluated by infecting these cells with a lentiviral vector-encoding green fluorescent protein (GFP). ADSCs transduced with lentivirus were able to generate NSC-like cells, without any effects on their growth, phenotype, and normal differentiation potential. NSC-like cells derived from ADSCs formed neurospheres and expressed high levels of the neural progenitor marker nestin. In the absence of selected growth factors, these neurospheres differentiated into neurons expressing NeuN and MAP2 and GFAP-expressing glia, as determined by immunocytochemistry, Western blotting, and quantitative real-time polymerase chain reaction. These results demonstrate that ADSCs can be induced to generate neurospheres that have NSC-like properties and may thus constitute a potential source of cells in stem cell therapy for neurological disorders.  相似文献   

7.
Wnt proteins promote neuronal differentiation in neural stem cell culture   总被引:36,自引:0,他引:36  
Wnt signaling is implicated in the control of cell growth and differentiation during CNS development from studies of mouse and chick models, but its action at the cellular level has been poorly understand. In this study, we examine the in vitro function of Wnt signaling in embryonic neural stem cells, dissociated from neurospheres derived from E11.5 mouse telencephalon. Conditioned media containing active Wnt-3a proteins are added to the neural stem cells and its effect on regeneration of neurospheres and differentiation into neuronal and glial cells was examined. Wnt-3a proteins inhibit regeneration of neurospheres, but promote differentiation into MAP2-positive neuronal cells. Wnt-3a proteins also increase the number of GFAP-positive astrocytes but suppress the number of oligodendroglial lineage cells expressing PDGFR or O4. These results indicate that Wnt-3a signaling can inhibit the maintenance of neural stem cells, but rather promote the differentiation of neural stem cells into several cell lineages.  相似文献   

8.
Both embryonic and adult central nervous system have been shown to contain multipotent neural stem cells, but it is not yet clear whether they consist of a single or distinct populations of neural precursors. Since embryonic human neural precursors, particularly in the spinal cord, have not been extensively characterized, we have studied their behaviour at different days of gestation and in different culture conditions. Depending on dissociation and culture conditions, neurospheres which contain nestin- and vimentin-positive or only vimentin-positive neural precursors can be isolated. Whereas the former can be isolated only at early developmental stages, the latter appear to be present at all the stages examined, between 45 and 89 days of gestation. Furthermore, comparison of the effect of FGF, EGF and the two factors in combination on colony formation shows an additive effect of the two growth factors, indicating the existence of more than one type of neural precursor. Overall our results suggest that the human spinal cord contains distinct and dynamic populations of neural precursors which are developmentally regulated.  相似文献   

9.
We have shown marked promotion of both proliferation and neuronal differentiation in pluripotent P19 cells exposed to the green tea amino acid theanine, which is a good substrate for SLC38A1 responsible for glutamine transport. In this study, we evaluated the activity of the mammalian target of rapamycin (mTOR) kinase pathway, which participates in protein translation, cell growth and autophagy in a manner relevant to intracellular glutamine levels, in murine neural progenitor cells exposed to theanine. Exposure to theanine promoted the phosphorylation of mTOR and downstream proteins in neurospheres from embryonic mouse neocortex. Although stable overexpression of SLC38A1 similarly facilitated phosphorylation of mTOR-relevant proteins in undifferentiated P19 cells, theanine failed to additionally accelerate the increased phosphorylation in these stable transfectants. Theanine accelerated the formation of neurospheres from murine embryonic neocortex and adult hippocampus, along with facilitation of both 5-bromo-2’-deoxyuridine incorporation and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction in embryonic neurospheres. In embryonic neurospheres previously exposed to theanine, a significant increase was seen in the number of cells immunoreactive for a neuronal marker protein after spontaneous differentiation. These results suggest that theanine activates the mTOR signaling pathway for proliferation together with accelerated neurogenesis in murine undifferentiated neural progenitor cells.  相似文献   

10.
11.
Microfluidics can provide unique experimental tools to visualize the development of neural structures within a microscale device, which is followed by guidance of neurite growth in the axonal isolation compartment. We utilized microfluidics technology to monitor the differentiation and migration of neural cells derived from human embryonic stem cells (hESCs). We co-cultured hESCs with PA6 stromal cells, and isolated neural rosette-like structures, which subsequently formed neurospheres in suspension culture. Tuj1-positive neural cells, but not nestin-positive neural precursor cells (NPCs), were able to enter the microfluidics grooves (microchannels), suggesting that neural cell-migratory capacity was dependent upon neuronal differentiation stage. We also showed that bundles of axons formed and extended into the microchannels. Taken together, these results demonstrated that microfluidics technology can provide useful tools to study neurite outgrowth and axon guidance of neural cells, which are derived from human embryonic stem cells.  相似文献   

12.
The DNA repair enzyme telomerase maintains chromosome stability by ensuring that telomeres regenerate each time the cell divides, protecting chromosome ends. During onset of neuroectodermal differentiation in P19 embryonal carcinoma (EC) cells three independent techniques (Southern blotting, Q-FISH, and Q-PCR) revealed a catastrophic reduction in telomere length in nestin-expressing neuronal precursors even though telomerase activity remained high. Overexpressing telomerase protein (mTERT) prevented telomere collapse and the neuroepithelial precursors produced continued to divide, but deaggregated and died. Addition of FGF-2 prevented deaggregation, protected the precursors from the apoptotic event that normally accompanies onset of terminal neuronal differentiation, allowed them to evade senescence, and enabled completion of morphological differentiation. Similarly, primary embryonic stem (ES) cells overexpressing mTERT also initiated neuroectodermal differentiation efficiently, acquiring markers of neuronal precursors and mature neurons. ES precursors are normally cultured with FGF-2, and overexpression of mTERT alone was sufficient to allow them to evade senescence. However, when FGF-2 was removed in order for differentiation to be completed most neural precursors underwent apoptosis indicating that in ES cells mTERT is not sufficient allow terminal differentiation of ES neural precursors in vitro. The results demonstrate that telomerase can potentiate the transition between pluripotent stem cell and committed neuron in both EC and ES cells.  相似文献   

13.
Determination of the molecules that regulate astrocyte development has been hindered by the paucity of markers that identify astrocytic precursors in vivo. Here we report that the chondroitin sulfate proteoglycan aggrecan both regulates astrocyte development and is expressed by embryonic glial precursors. During chick brain development, the onset of aggrecan expression precedes that of the astrocytic marker GFAP and is concomitant with detection of the early glial markers GLAST and glutamine synthetase. In co-expression studies, we established that aggrecan-rich cells contain the radial glial markers nestin, BLBP and GLAST and later in embryogenesis, the astroglial marker GFAP. Parallel in vitro studies showed that ventricular zone cultures, enriched in aggrecan-expressing cells, could be directed to a GFAP-positive fate in G5-supplemented differentiation media. Analysis of the chick aggrecan mutant nanomelia revealed marked increases in the expression of the astrocyte differentiation genes GFAP, GLAST and GS in the absence of extracellular aggrecan. These increases in astrocytic marker gene expression could not be accounted for by changes in precursor proliferation or cell death, suggesting that aggrecan regulates the rate of astrocyte differentiation. Taken together, these results indicate a major role for aggrecan in the control of glial cell maturation during brain development.  相似文献   

14.
Isolating a pure population of neural stem cells (NSCs) has been difficult since no exclusive surface markers have been identified for panning or FACS purification. Moreover, additional refinements for maintaining NSCs in culture are required, since NSCs generate a variety of neural precursors (NPs) as they proliferate. Here, we demonstrate that post‐natal rat NPs express low levels of pro‐apoptotic molecules and resist phosphatidylinositol 3′OH kinase and extracellular regulated kinase 1/2 inhibition as compared to late oligodendrocyte progenitors. Furthermore, maintaining subventricular zone precursors in LY294002 and PD98059, inhibitors of PI3K and ERK1/2 signaling, eliminated lineage‐restricted precursors as revealed by enrichment for Nestin+/SOX‐2+ cells. The cells that survived formed neurospheres and 89% of these neurospheres were tripotential, generating neurons, astrocytes, and oligodendrocytes. Without this enrichment step, less than 50% of the NPs were Nestin+/SOX‐2+ and 42% of the neurospheres were tripotential. In addition, neurospheres enriched using this procedure produced 3‐times more secondary neurospheres, supporting the conclusion that this procedure enriches for NSCs. A number of genes that enhance survival were more highly expressed in neurospheres compared to late oligodendrocyte progenitors. Altogether, these studies demonstrate that primitive neural precursors can be enriched using a relatively simple and inexpensive means that will facilitate cell replacement strategies using stem cells as well as other studies whose goal is to reveal the fundamental properties of primitive neural precursors.

  相似文献   


15.
Proteoglycans in brain development   总被引:4,自引:0,他引:4  
Proteoglycans, as part of the extracellular or cell-surface milieu of most tissues and organ systems, play important roles in morphogenesis by modulating cell-matrix or cell-cell interactions, cell adhesiveness, or by binding and presenting growth and differentiation factors. Chondroitin sulfate proteoglycans which constitute the major population of proteoglycans in the central nervous system may influence formation of neuronal nuclei, establishment of boundaries for axonal growth and act as modulators of neuronal outgrowth during brain development, as well as during regeneration after injury. There is a paucity of information on the role of chondroitin sulfate proteoglycans in central nervous system organogenesis. In the chick embryo, aggrecan has a regionally specific and developmentally regulated expression profile during brain development. By Northern and Western blot analysis, aggrecan expression is first detected in chick brain on embryonic day 7 (E7), increases from E7 to E13, declines markedly after E16, and is not evident in hatchling brains. The time course and pattern of aggrecan expression observed in ventricular zone cells suggested that it might play a role in gliogenesis. We have analyzed the role of aggrecan during brain development using a aggrecan-deficient model, nanomelia. In nanomelic chicks, expression and levels of neurocan and brevican is not affected, indicating a non-redundant role for these members of the aggrecan gene family. Our analysis of the aggrecan-deficient model found a severely altered phenotype which affects cell behavior in a neuronal culture paradigm and expression of astrocytic markers in vivo . Taken together our results suggest a function for aggrecan in the specification of a sub-set of glia precursors that might give rise to astrocytes in vivo.  相似文献   

16.
Pluripotent murine embryonic stem (ES) cells can differentiate into all cell types both in vivo and in vitro. Based on their capability to proliferate and differentiate, these ES cells appear as a very promising tool for cell therapy. The understanding of the molecular mechanisms underlying the neural differentiation of the ES cells is a pre-requisite for selecting adequately the cells and conditions which will be able to correctly repair damaged brain and restore altered cognitive functions. Different methods allow obtaining neural cells from ES cells. Most of the techniques differentiate ES cells by treating embryoid bodies in order to keep an embryonic organization. More recent techniques, based on conditioned media, induce a direct differentiation of ES cells into neural cells, without going through the step of embryonic bodies. Beyond the fact that these techniques allow obtaining large numbers of neural precursors and more differentiated neural cells, these approaches also provide valuable information on the process of differentiation of ES cells into neural cells. Indeed, sequential studies of this process of differentiation have revealed that globally ES cells differentiating into neural cells in vitro recapitulate the molecular events governing the in vivo differentiation of neural cells. Altogether these data suggest that murine ES cells remain a highly valuable tool to obtain large amounts of precursor and differentiated neural cells as well as to get a better understanding of the mechanisms of neural differentiation, prior to a potential move towards the use of human ES cells in therapy.  相似文献   

17.
Lysophosphatidic acid (LPA) is an extracellular lipid mediator that regulates cortical development. Here we examined how LPA influences the cell fate of cortical neuroblasts using a neurosphere culture system. We generated neurospheres in the presence of basic fibroblast growth factor (bFGF). Treatment with LPA throughout the culture period significantly reduced the number of cells in the neurospheres. When dissociated single cells derived from neurospheres were induced to differentiate by adherence on coverslips, the proportion of MAP2-positive neurons was higher in LPA-treated neurospheres than in those treated with bFGF alone, and the proportion of myelin basic protein-positive oligodendrocytes was lower. Consistent with this finding, LPA raised the ratio of beta-tubulin type III-positive young neurons and reduced the ratio of CD140a-positive oligodendrocyte precursors in neurospheres. These effects of LPA were inhibited by pretreatment of neurospheres with pertussis toxin or an LPA(1)-preferring antagonist, Ki16425. Moreover, LPA-induced enhancement of neuronal differentiation was not observed in neurospheres derived from lpa(1)-null mice. These results suggest that LPA promotes the commitment of neuroblasts to the neural lineage through the LPA(1)-G(i/o) pathway.  相似文献   

18.
Monoclonal antibodies Cat-301 and Cat-304 recognize a neuronal cell surface-associated chondroitin sulfate proteoglycan (CSPG), which is expressed during critical periods of postnatal development in the mammalian central nervous system (CNS). In the present study we show that the CNS CSPG identified by Cat-301/304 is similar to aggrecan, the high molecular weight CSPG from cartilage. By Western blot analysis, cartilaginous tissues, which are rich sources of aggrecan, have a high concentration of a high molecular weight CSPG which is immunoreactive with Cat-301 and 304. The Cat-301 and 304 epitopes, however, are partially masked by chondroitin sulfate glycosamino-glycan and are unmasked by digestion of the antigen with chondroitinase ABC. Although the antigen from both cartilage and CNS can be purified by CsCl buoyant density gradient centrifugation, a standard technique for purifying aggrecan, most of the antigen from the CNS has a lower buoyant density than that of cartilage. This may be due, in part, to the paucity of keratan sulfate substitution on the CNS antigen compared with that of the cartilage antigen. Both the CNS and cartilage antigens bind to hyaluronic acid, a feature characteristic of aggrecan. The physiochemical, biochemical, and functional properties of the Cat-301/304 antigen from cartilage are identical to aggrecan. The CNS antigen is similar, but not identical, to the cartilage antigen, and may thus represent another member of the family of high molecular weight CSPGs which bind to and aggregate with hyaluronic acid.  相似文献   

19.
Proteomic analysis of neural differentiation of mouse embryonic stem cells   总被引:4,自引:0,他引:4  
Wang D  Gao L 《Proteomics》2005,5(17):4414-4426
Mouse embryonic stem cells (mESCs) can differentiate into different types of cells, and serve as a good model system to study human embryonic stem cells (hESCs). We showed that mESCs differentiated into two types of neurons with different time courses. To determine the global protein expression changes after neural differentiation, we employed a proteomic strategy to analyze the differences between the proteomes of ES cells (E14) and neurons. Using 2-DE plus LC/MS/MS, we have generated proteome reference maps of E14 cells and derived dopaminergic neurons. Around 23 proteins with an increase or decrease in expression or phosphorylation after differentiation have been identified. We confirmed the downregulation of translationally controlled tumor protein (TCTP) and upregulation of alpha-tubulin by Western blotting. We also showed that TCTP was further downregulated in derived motor neurons than in dopaminergic neurons, and its expression level was independent of extracellular Ca(2+) concentration during neural differentiation. Potential roles of TCTP in modulating neural differentiation through binding to Ca(2+), tubulin and Na,K-ATPase, as well as the functional significance of regulation of other proteins such as actin-related protein 3 (Arp3) and Ran GTPase are discussed. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.  相似文献   

20.
The formation of glial scar and cystic cavities restricts axon regeneration after spinal cord injury. Chondroitin sulphate proteoglycans (CSPGs) are regarded as the prominent inhibitory molecules in the glial scar, and their inhibitory effects may be abolished in part by chondroitinase ABC (ChABC), which can digest CSPGs. CSPGs are secreted mostly by reactive astrocytes, which form dense scar tissues. The intermediate filament protein vimentin underpins the cytoskeleton of reactive astrocytes. Previously we have shown that retroviruses carrying full-length antisense vimentin cDNA reduce reactive gliosis. Here we administered both antisense vimentin cDNA and ChABC to hemisected rat spinal cords. Using RT-PCR, Western blotting and immunohistochemistry, we found that the combined treatment reduced the formation of glial scar and cystic cavities through degrading CSPGs molecules and inhibiting intermediate filament proteins. The modified intra- and extra-cellular architecture may alter the physical and biochemical characteristics of the scar, and the combined therapy might be used to inhibit glial scar formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号