首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A (13q21q) translocation was found in an infant with Down's syndrome. The 17-year-old mother and the grandmother carried the translocation 45,XX,t(13;21)(p12;q11). The great grandparents had normal karyotypes. Fluorescence marker studies suggested that the translocation originated in the great grandmother. The hypothesis was supported by satellite association studies which showed a significant excess of 13–21 and 13–15 associations in the great grandmother.  相似文献   

2.
A case of an inherited type of D/G translocation D1-trisomy syndrome was described. A female proposita who had the clinical signs of D1-trisomy syndrome was found to have a chromosome complement of 46,XX,--G,+t(DqGq). examination of Q- and G-stained karyotypes revealed that the chromosomes involved in the translocation were members of Nos. 13 and 22, or t(13q22q) with breaks at p12 of both chromosomes. C-stained figures also showed a large heterochromatin block in its centromeric region. The t(13q22q) chromosome was transmitted from the paternal grandmother of the proposita through at least three generations.  相似文献   

3.
Summary Reexamination was made on a male infant previously reported as 21-monosomy. Extensive chromosome banding analyses in the patient and parents disclosed an unbalanced de novo translocation between chromosomes 13 and 21. The patient's karyotype was interpreted as 45,XY,-13,-21,+der(13),t(13;21) (q2 or 3;q1 or 2)pat. The patient showed many clinical features characteristic of 13q- syndrome.  相似文献   

4.
Clinic-cytogenetic analysis of the patient with distal 15q trisomy is presented. Proband's mother and grandmother are carriers of the balanced translocation t (15; 16) (q24; p13). Phenotypically normal proband's mother has a second cell clone with repaired marker chromosome 15 which participates in the balanced translocation of the main cell line. It is supposed possible to repair translocated human chromosomes as a result of mitotic recombination process.  相似文献   

5.
A two-year-old girl has the following features of the cri du chat syndrome: microcephaly, hypertelorism, downward slanting of the palpebral fissures, psychomotor retardation and a cat-like cry. She is only of five patients having the cat cry syndrome with 45 chromosomes. Her karyotype is 45,XX, -5, -14, +t(5; 14)(5qter leads to 5p11: : 14q11 leads to 14qter) with the translocation inherited from her mother and maternal grandmother, each of whom is the carrier of a balanced translocation 46,XX,t(5;14)(p11q11). Normal plasma activity for hexosaminidase B suggests the locus for this enzyme is not located in the delected segment of 5 p.  相似文献   

6.
The majority of Ewing sarcomas and peripheral neuroectodermal tumors (PNET) that have been karyotyped contain a specific translocation, t(11;22)(q23;q11). We report here a second nonrandom translocation, der(16)t(1;16)(q21;q13), in 2 of 20 cases of Ewing sarcoma (seven previously unreported) and 2 of 7 cases of PNET (all previously unreported). All cases with this translocation also contained the t(11;22). Comparison of C-banding patterns in tumor and peripheral lymphocyte karyotypes in one case indicated that the likely breakpoints were 1q21 and 16q13. The presence of this translocation in cell lines will enable further investigation of the molecular events important in the pathogenesis of Ewing sarcoma and PNET.  相似文献   

7.
Summary This paper reports the case of a one-day-old male child presenting the typical features of Patau's syndrome. The cytogenetic study by means of conventional techniques and GTG and QFQ banding techniques showed that the chromosomal pattern of the propositus was 46,XYq+,-21,+t(13q21q) 15ps+,22ps+, and that the nondisjunction that originated the translocation and trisomy had occurred in the mother.  相似文献   

8.
Inherited Xq duplication due to a zygotic translocation t(X;X)(q23;q27)   总被引:1,自引:0,他引:1  
An Xq-duplication was found in a female child with multiple malformations. The family study revealed that her mother, who has a nearly normal phenotype, carries the same duplication. The karyotype of the grandmother shows the existence of a mosaicism: 46,X,del(X) (q23)/46,X,dup(X)(q27----q23). This mosaicism can be related to a translocation t(X;X)(q23;q27) during the first cell division of the zygote.  相似文献   

9.
A novel translocation t(9;21)(q13;q22) associated with trisomy 4 has been detected in a patient with acute myelomonocytic leukemia (AML,M4) in relapse. The chromosomal translocation results in rearrangement of the RUNX1 gene at 21q22. The DNA sequence rearranged on chromosome 9 remains unidentified. The diversity of the partners involved in translocations implicating RUNX1 suggests that the functional consequences of the abnormality are more due to the truncation of RUNX1 than to the identity of its partner in the rearrangement.  相似文献   

10.
Summary Several members of a family with a translocation between the short arm of chromosome 9 and the long arm of chromosome 13 (9p-;13q+) are presented. Although the translocation found in various members of the family looked alike and appeared to be balanced, the clinical features were different. The like-sex twins displayed some features of 9p monosomy syndrome, whereas their mother and maternal grandmother, who apparently had the same translocation, showed only a few features of 9p- syndrome in addition to mild mental retardation. We suggest that a minute deletion of the short arm of chromosome 9 may cause features of 9p- syndrome and that the clinical features of this syndrome in older individuals may be too mild for the clinical diagnosis to be possible.  相似文献   

11.
We have performed genetic linkage analysis in 13 large multiply affected families, to test the hypothesis that there is extensive heterogeneity of linkage for genetic subtypes of schizophrenia. Our strategy consisted of selecting 13 kindreds containing multiple affected cases in three or more generations, an absence of bipolar affective disorder, and a single progenitor source of schizophrenia with unilineal transmission into the branch of the kindred sampled. DNA samples from these families were genotyped with 365 microsatellite markers spaced at approximately 10-cM intervals across the whole genome. We observed LOD scores >3.0 at five distinct loci, either in the sample as a whole or within single families, strongly suggesting etiological heterogeneity. Heterogeneity LOD scores >3.0 in the sample as a whole were found at 1q33.2 (LOD score 3.2; P=.0003), 5q33.2 (LOD score 3.6; P=.0001), 8p22.1-22 (LOD score 3.6; P=.0001), and 11q21 (LOD score 3.1; P=.0004). LOD scores >3.0 within single pedigrees were found at 4q13-31 (LOD score 3.2; P=.0003) and at 11q23.3-24 (LOD score 3.2; P=.0003). A LOD score of 2.9 was also found at 20q12.1-11.23 within in a single family. The fact that other studies have also detected LOD scores >3.0 at 1q33.2, 5q33.2, 8p21-22 and 11q21 suggests that these regions do indeed harbor schizophrenia-susceptibility loci. We believe that the weight of evidence for linkage to the chromosome 1q22, 5q33.2, and 8p21-22 loci is now sufficient to justify intensive investigation of these regions by methods based on linkage disequilibrium. Such studies will soon allow the identification of mutations having a direct effect on susceptibility to schizophrenia.  相似文献   

12.
Most patients with neurofibromatosis (NF1) are endowed with heterozygous mutations in the NF1 gene. Approximately 5% show an interstitial deletion of chromosome 17q11.2 (including NF1) and in most cases also a more severe phenotype. Here we report on a 7-year-old girl with classical NF1 signs, and in addition mild overgrowth (97th percentile), relatively low OFC (10th-25th percentile), facial dysmorphy, hoarse voice, and developmental delay. FISH analysis revealed a 17q11.2 microdeletion as well as an unbalanced 7p;13q translocation leading to trisomy of the 7q36.3 subtelomeric region. The patient's mother and grandmother who were phenotypically normal carried the same unbalanced translocation. The 17q11.2 microdeletion had arisen de novo. Array comparative genomic hybridization (CGH) demonstrated gain of a 550-kb segment from 7qter and loss of 2.5 Mb from 17q11.2 (an atypical NF1 microdeletion). We conclude that the patient's phenotype is caused by the atypical NF1 deletion, whereas 7q36.3 trisomy represents a subtelomeric copy number variation without phenotypic consequences. To our knowledge this is the first report that a duplication of the subtelomeric region of chromosome 7q containing functional genes (FAM62B, WDR60, and VIPR2) can be tolerated without phenotypic consequences. The 17q11.2 microdeletion (containing nine more genes than the common NF1 microdeletions) and the 7qter duplication were not accompanied by unexpected clinical features. Most likely the 7qter trisomy and the 17q11.2 microdeletion coincide by chance in our patient.  相似文献   

13.
Jumping translocations (JTs) are very rare chromosome aberrations, usually identified in tumors. We report a constitutional JT between donor chromosome 21q21.3-->qter and recipients 13qter and 18qter, resulting in an approximately 15.5-Mb proximal deletion 21q in a girl with mild developmental delay and minor dysmorphic features. Using fluorescence in situ hybridization (FISH) studies, we identified an approximately 550-kb complex inter- and intra-chromosomal low-copy repeat (LCR) adjacent to the 21q21.3 translocation breakpoint. On the recipient chromosomes 13qter and 18qter, the telomeric sequences TTAGGG were retained. Genotyping revealed that the deletion was of maternal origin. We propose that genome architecture involving LCRs may be a major mechanism responsible for the origin of jumping translocations.  相似文献   

14.
We have employed molecular probes and in situ hybridization to investigate the DNA sequences flanking the breakpoint of a group of t(14q21q) Robertsonian translocations. In all the families studied, the probands were patients with Down syndrome who carried a de novo t(14q21q) translocation. The DNA probes used were two alphoid sequences, alphaRI and alphaXT, which are specific for the centromeres of chromosomes 13 and 21 and of chromosomes 14 and 22, respectively; a satellite III sequence, pTRS-47, which is specific for the proximal p11 region of chromosomes 14 and 22; and a newly defined satellite III DNA, pTRS-63, which is specific for the distal p11 region of chromosome 14. The two alphoid probes detected approximately the same amount of autoradiographic signal on the translocated chromosomes as was expected for chromosomes 14 and 21 of the originating parent, suggesting that there has been no loss of these centromeric sequences during the translocation events. Results with the two satellite III probes indicated that the domain corresponding to pTRS-47 was retained in the translocated chromosomes, whereas the domain for pTRS-63 was lost. These results have allowed us to place the translocation breakpoint between the pTRS-47 and pTRS-63 domains within the p11 region of chromosome 14.  相似文献   

15.
Partial trisomy for the long arm of chromosome 15 was detected in a 21-year-old girl with severe growth and mental retardation. A balanced reciprocal translocation - t(7;15)(q35;q14) - is present in the mother.  相似文献   

16.
A tandem translocation of chromosome 13-46,XXdup13(q21 leads to qter)--occurred de novo in a patient with the following features: normal birthweight; early feeding difficulties; mild psychomotor retardation; low set hairline on the forehead; thick eyebrows; long, upturned eyelashes; pointed nose; micrognathia; large, flat, posteriorly rotated ears; multiple hemangiomata; normal hematological status. The hypothesis of an unequal crossing-over is discussed, as well as the possibility of constructing a phenotypic map of chromosome 13.  相似文献   

17.
Atopic dermatitis (AD) is a common, itchy skin disease of complex inheritance characterized by dermal and epidermal inflammation. The heritability is considerable and well documented. To date, four genome scans have examined the AD phenotype, showing replicated linkage at 3p26-22, 3q13-21 and 18q11-21. Our previous AD scan showed evidence of linkage to loci at 3p and 18q, and furthermore at 4p15-14. In order to further investigate the genetic basis of AD, we collected and analysed a new Danish family sample consisting of 130 AD sib pair families (555 individuals including 295 children with AD). AD was diagnosed after clinical examination, AD severity was scored and specific IgE was determined. A linkage scan of chromosome 3, 4 and 18 was performed using 91 microsatellite markers. Linkage analyses were performed of dichotomous phenotypes and semi-quantitative traits including the AD severity score. We analysed the novel AD sample alone and together with the previously examined sample. AD severity showed a maximum Z-score of 3.7 at 4q22.1 suggesting the localization of a novel gene for AD severity. A maximum MOD score of 4.6 was obtained at 3p24 for the AD phenotype, providing the first significant linkage of AD at this locus. A maximum MLS score of 3.3 was obtained at 3q21 for IgE-associated AD, and evidence of linkage was also obtained at 3p22.2-21.31, 3q13, 4q35, and 18q12. The results presented should provide a firm basis for gene-targeting studies of AD and related disorders.  相似文献   

18.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

19.
We describe a female patient of 1 year and 5 months-old, referred for genetic evaluation due to neuropsychomotor delay, hearing impairment and dysmorphic features. The patient presents a partial chromosome 21 monosomy (q11.2→q21.3) in combination with a chromosome 3p terminal monosomy (p25.3→pter) due to an unbalanced de novo translocation. The translocation was confirmed by fluorescence in situ hybridization (FISH) and the breakpoints were mapped with high resolution array. After the combined analyses with these techniques the final karyotype was defined as 45,XX,der(3)t(3;21)(p25.3;q21.3)dn,-21.ish der(3)t(3;21)(RP11-329A2-,RP11-439F4-,RP11-95E11-,CTB-63H24 +).arr 3p26.3p25.3(35,333-10,888,738)) × 1,21q11.2q21.3(13,354,643-27,357,765) × 1. Analysis of microsatellite DNA markers pointed to a paternal origin for the chromosome rearrangement. This is the first case described with a partial proximal monosomy 21 combined with a 3p terminal monosomy due to a de novo unbalanced translocation.  相似文献   

20.
Down syndrome is rarely due to a de novo Robertsonian translocation t(14q;21q). DNA polymorphisms in eight families with Down syndrome due to de novo t(14q;21q) demonstrated maternal origin of the extra chromosome 21q in all cases. In seven nonmosaic cases the DNA markers showed crossing-over between two maternal chromosomes 21, and in one mosaic case no crossing-over was observed (this case was probably due to an early postzygotic nondisjunction). In the majority of cases (five of six informative families) the proximal marker D21S120 was reduced to homozygosity in the offspring with trisomy 21. The data can be best explained by chromatid translocation in meiosis I and by normal crossover and segregation in meiosis I and meiosis II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号