首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EET between the two circular bacteriochlorophyll compartments B800 and B850 in native (containing the carotenoid rhodopin) and carotenoidless LH2 isolated from the photosynthetic purple sulfur bacterium Allochromatium minutissimum was investigated by femtosecond time-resolved transient absorption spectroscopy. Both samples were excited with 120-fs laser pulses at 800 nm, and spectral evolution was followed in the 720-955 nm range at different delay times. No dependence of transient absorption in the B800 band on the presence of the carotenoid rhodopin was found. Together with the likewise virtually unchanged absorption spectra in the bacteriochlorophyll Qy region, these observations suggest that absence of rhodopin does not significantly alter the structure of the pigment-protein complex including interactions between bacteriochlorophylls. Apparently, rhodopin does also not accelerate B800 to B850 EET in LH2, contrary to what has been suggested previously. Moreover, “carotenoid-catalyzed internal conversion” can also be excluded for the bacteriochlorophylls in LH2 of A. minutissimum. Together with previous results obtained with two-photon fluorescence excitation spectroscopy, it can also be concluded that there is neither EET from rhodopin to B800 nor (back-)EET from B800 to rhodopin.  相似文献   

2.
Time-resolved electron paramagnetic resonance was used to study the properties of carotenoid triplet states populated in LH2 light-harvesting complexes of phototrophic bacteria Allochromatium minutissimum, Rhodopseudomonas palustris, and in carotenoid films free of bacteriochlorophyll. The study was performed on purified LH2 preparations not contaminated by reaction centers, and under selective pigment excitation. The obtained results enable a conclusion that the carotenoid triplet states, both in LH2 complexes and films, are populated in the process of homofission of singlet excitation into two triplets, which involves only carotenoid molecules. It is observed that the fission process in magnetic field leads to predominant population of the T0 spin sublevel of the triplet. One molecular spin sublevel of the triplet is demonstrated to possess an increased probability of intersystem crossing to the ground state, independent of the carotenoid configuration. Pigment composition of the LH2 protein heterodimers is discussed, and a conclusion of the possible presence of two interacting carotenoid molecules is made.  相似文献   

3.
Discrepancy is revealed between the values of excitation transfer times measured experimentally, and those calculated, for the atomic structures of B800 → B850 bacteriochlorophylls within the LH2 light-harvesting pigment–protein complex of the purple bacterium Rhodopseudomonas acidophila. The value 2.9–3.2 ps for the B800 → B850 excitation transfer, calculated on the basis of atomic structure of LH2, is about 4-times longer than that measured for this bacterium (0.7 ps). This discrepancy appears common in at least two purple bacteria. Possible sources responsible for this discrepancy are discussed. It may either signify some drawback/s/ in our notions about the precise in vivo structure of LH2 complexes, for example, possible changes of LH2 structure during crystallization, or it may reflect our ignorance of some mechanisms involved in excitation migration.  相似文献   

4.
Two types of peripheral light-harvesting complexes LH2 (B800–850) from photosynthetic purple bacterium Allochromatium minutissimum were studied. First type containing carotenoids was prepared from wild type cells. The other one was obtained from carotenoid depleted cells grown with diphenylamine. We have shown that under laser femtosecond excitation within absorption 1200–1500 nm wavelength range the two-photon excitation of LH2 complexes takes place. This can be observed as fluorescence of bacteriochlorophyll (BChl) spectral form B850 (BChl molecules of circular aggregate with strong exciton interaction in 850 nm spectral domain). LH2 fluorescence excitation spectra under two-photon excitation are the same for carotenoid-containing and carotenoidless preparations. In both cases the broad band with peak near 1350 (675) nm (FWHM ~ 240 (120) nm) was found. It is concluded that the broad band with peak near 1350 (675) nm in two-photon excitation spectra of LH2 complexes from Allochromatium minutissimum cannot be interpreted as two-photon excitation band of the optically forbidden S0 → S1 transition of carotenoids (rhodopin). Possible nature of this band is discussed.  相似文献   

5.
Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex.  相似文献   

6.
This study systematically investigated the different types of LH2 produced by Allochromatium (Alc.) vinosum, a photosynthetic purple sulphur bacterium, in response to variations in growth conditions. Three different spectral forms of LH2 were isolated and purified, the B800-820, B800-840 and B800-850 LH2 types, all of which exhibit an unusual split 800 peak in their low temperature absorption spectra. However, it is likely that more forms are also present. Relatively more B800-820 and B800-840 are produced under low light conditions, while relatively more B800-850 is produced under high light conditions. Polypeptide compositions of the three different LH2 types were determined by a combination of HPLC and TOF/MS. The B800-820, B800-840 and B800-850 LH2 types all have a heterogeneous polypeptide composition, containing multiple types of both α and β polypeptides, and differ in their precise polypeptide composition. They all have a mixed carotenoid composition, containing carotenoids of the spirilloxanthin series. In all cases the most abundant carotenoid is rhodopin; however, there is a shift towards carotenoids with a higher conjugation number in LH2 complexes produced under low light conditions. CD spectroscopy, together with the polypeptide analysis, demonstrates that these Alc. vinosum LH2 complexes are more closely related to the LH2 complex from Phs. molischianum than they are to the LH2 complexes from Rps. acidophila.  相似文献   

7.
Incorporation of spirilloxanthin into carotenoidless LH2 and LH1-RC complexes from a purple sulfur bacterium Allochromatium (Alc.) minutissimum was studied. Carotenoidless cells of Alc. minutissimum were obtained using diphenylamine, a carotenoid biosynthesis inhibitor. In the course of incorporation of the carotenoid mixture, the composition of which corresponded to that of Alc. minutissimum control photosynthetic membranes, no selective incorporation of spirilloxanthin into the LH1-RC complex was detected. It is assumed that in vivo carotenoids are not incorporated into the LH2 and LH1-RC complexes from a common pool. Pure spirilloxanthin destroys both the LH2 and LH1-RC complexes. Within the concentration range of spirilloxanthin in the incorporated mixture from 27% to 52%, it was found to be incorporated into the LH2 and LH1-RC complexes with the efficiency of 13% and 33%, respectively. The possible existence of different sites of assembly for the LH2 and LH1-RC complexes is discussed, as well as of two fractions of LH2 complexes, in one of which rhodopin may be integrated, and in the other (minor) one, spirilloxanthin.  相似文献   

8.
Carotenoidless light-harvesting complexes (DPA-complexes) LH1-RC and LH2 were isolated from the purple sulfur bacterium Ectothiorhodospira haloalkaliphila in which carotenoid biosynthesis was suppressed with diphenylamine (DPA). Carotenoids of the spirilloxanthine series, which were isolated from the same bacterium, were incorporated into the DPA-complexes in vitro with an efficiency of 95–100%. The comparison of characteristics of the complexes with the incorporated carotenoids and the control complexes showed that the LH2 complexes with the incorporated carotenoids restored their absorption spectra, circular dichroism signals, and energy transfer from carotenoids to bacteriochlorophyll, which indicates that carotenoids were correctly incorporated into the structure of this complex.  相似文献   

9.
Pigments of two light-harvesting (LH) pigment-protein complexes,LH 1 and LH 2, isolated from the purple bacterium, Rubrivivaxgelatinosus, grown anaerobically and semi-aerobically in thelight were investigated. In the anaerobic culture, pigment compositionsof both LH 1 and LH 2 complexes were approximately equal; OH-spheroidenewas the major carotenoid accompanying spheroidene and spirilloxanthin.In the semi-aerobic culture, pigment compositions of both complexesagain were approximately equal; an oxidized carotenoid, OH-spheroidenone,was the major component accompanying spheroidenone and 2,2'-diketospirilloxanthin.A novel carotenoid of 2-ketospirilloxanthin, an intermediatebetween spirilloxanthin, and 2,2'-diketospirilloxanthin, wasfound in both LH complexes from the semi-aerobic culture. Basedon these results, we propose the presence of both the spheroideneand the normal spirilloxanthin pathways as the biosyntheticpathway of carotenoids in this bacterium. The oxidation procedureof spirilloxanthin by CrtA was also discussed. 1 This paper is dedicated to Prof. K. Harashima on the occasionof his 70th birthday and his retirement.  相似文献   

10.
The photosynthetic apparatus of Rhodobacter sphaeroides is comprised of three types of pigment-protein complex: the photochemical reaction centre and its attendant LH1 and LH2 light-harvesting complexes. To augment existing deletion/insertion mutants in the genes coding for these complexes we have constructed two further mutants, one of which is a novel double mutant which is devoid of all three types of complex. We have also constructed vectors for the expression of either LH1, LH2 or reaction-centre genes. The resulting system allows each pigment-protein complex to be studied either as part of an intact photosystem or as the sole complex in the cell. In this way we have demonstrated that reaction centres can assemble independently of either light-harvesting complex in R. sphaeroides. In addition, the isolation of derivatives of the deletion/insertion mutants exhibiting spontaneous mutations in carotenoid biosynthesis provides an avenue for examining the role of carotenoids in the assembly of the photosynthetic apparatus. We show that the LH1 complex is assembled regardless of the carotenoid background, and that the type of carotenoid present modifies the absorbance of the LH1 bacteriochlorophylls.  相似文献   

11.
Photosynthesis in purple bacteria is performed by pigment–protein complexes that are closely packed within specialized intracytoplasmic membranes. Here we report on the influence of carotenoid composition on the organization of RC–LH1 pigment–protein complexes in intact membranes and cells of Rhodobacter sphaeroides. Mostly dimeric RC–LH1 complexes could be isolated from strains expressing native brown carotenoids when grown under illuminated/anaerobic conditions, or from strains expressing green carotenoids when grown under either illuminated/anaerobic or dark/semiaerobic conditions. However, mostly monomeric RC–LH1 complexes were isolated from strains expressing the native photoprotective red carotenoid spheroidenone, which is synthesized during phototrophic growth in the presence of oxygen. Despite this marked difference, linear dichroism (LD) and light-minus-dark LD spectra of oriented intact intracytoplasmic membranes indicated that RC–LH1 complexes are always assembled in ordered arrays, irrespective of variations in the relative amounts of isolated dimeric and monomeric RC–LH1 complexes. We propose that part of the photoprotective response to the presence of oxygen mediated by synthesis of spheroidenone may be a switch of the structure of the RC–LH1 complex from dimers to monomers, but that these monomers are still organized into the photosynthetic membrane in ordered arrays. When levels of the dimeric RC–LH1 complex were very high, and in the absence of LH2, LD and ?LD spectra from intact cells indicated an ordered arrangement of RC–LH1 complexes. Such a degree of ordering implies the presence of highly elongated, tubular membranes with dimensions requiring orientation along the length of the cell and in a proportion larger than previously observed.  相似文献   

12.
Strongly bounded associates of B800–850 (LH2) and B800–830 (LH3) complexes from photosynthetic purple bacterium Thiorhodospira sibirica were investigated. It was shown that associates contain 8–10 complexes (LH2:LH3 ≈ 1:1). Absorption spectra of the monomer LH2 and the monomer LH3 complexes were calculated. Excitation of B800 absorption band of associates results in: (i) intracomplex excitation energy transfer from B800 to B830 or B850 with time constant of about 500 fs; (ii) intercomplex excitation energy transfer from B820 band of LH3 complex to B850 band of LH2 complex with time constant of about 2.5 ps; (iii) excitation deactivation in B850 band of LH2 complex with time constant of about 800 ps. Signal polarization at long-wavelength side of associates absorption spectrum near 900 nm was negative (?0.1). The interaction of LH3 and LH2 complexes in associates is, to some extent, analogous to the interaction of LH2 and LH1 complexes in chromatophores. Time constant of excitation energy transfer between LH3 and LH2 complexes in associates may be regarded as a minimal time constant for energy transfer between the peripheral and core antenna complexes.  相似文献   

13.
Gall A  Cogdell RJ  Robert B 《Biochemistry》2003,42(23):7252-7258
In the LH2 proteins from Rhodobacter (Rb.) sphaeroides, the hydrogen bonds between the bacteriochlorophyll (Bchl) molecules and their proteic binding sites exhibit a strong variance with respect to carotenoid content and type. In the absence of the carotenoid molecule, such as in the LH2 from Rb. sphaeroides R26.1, the void in the protein structure induces a significant reorganization of the binding site of both Bchl molecules responsible for the 850 nm absorption, which is not observed when the 800 nm absorbing Bchl is selectively removed from these complexes. FT Raman spectra of LH2 complexes from Rb. sphaeroides show that the strength of the hydrogen bond between the 850 nm absorbing Bchl bound to the alpha polypeptide and the tyrosine alpha(45) depends precisely on the chemical nature of the bound carotenoid. These results suggest that the variable extremity of the carotenoid is embedded in these LH2 complexes, lying close to the interacting Bchl molecules. In the LH2 from Rhodopseudomonas acidophila, the equivalent part of the rhodopin glucoside, which bears the glucose group, lies close to the amino terminal of the antenna polypeptide. This contrast suggests that the structure of the carotenoid binding site in LH2 complexes strongly depends on the bacterial species and/or on the chemical nature of the bound carotenoid.  相似文献   

14.
Okenone was reconstituted into light harvesting (LH) complexes of the purple photosynthetic bacterium Allochromatium minutissimum possessing the spirilloxanthin pathway for carotenoid biosynthesis. Suppression of this pathway by diphenylamine, an inhibitor of carotenogenesis, yielded nearly carotenoidless complexes preserving their native spectral properties. Using a previously developed technique, okenone was readily reconstituted into LH1 complex (>90%) whereas its reconstitution into LH2 complex was of low efficacy (10-20%). The absorption band of the reconstituted okenone was shifted to shorter wavelength compared with its position in vivo. This is typical for other reconstituted carotenoids. The reconstitution of okenone was confirmed by Li-DS electrophoresis (in contrast to free okenone the reconstituted okenone migrated with complexes), circular dichroism spectra (reconstituted okenone exhibited optical activity), and fluorescence excitation spectrum (energy transfer from okenone to bacteriochlorophyll was at the control level).  相似文献   

15.
Noy D  Dutton PL 《Biochemistry》2006,45(7):2103-2113
We introduce LH1beta24, a minimal 24 amino acid polypeptide that binds and assembles bacteriochlorophylls (BChls) in micelles of octyl beta-glucoside (OG) into complexes with spectral properties that resemble those of B820, a universal intermediate in the assembly of native purple bacterial light-harvesting complexes (LHs). LH1beta24 was designed by a survey of sequences and crystal structures of bacterial LH proteins from different organisms combined with currently available information from in vitro reconstitution studies and genetically modified LHs in vivo. We took as a template for the design sphbeta31, a truncated 31 amino acid analogue of the native beta-apoprotein from the core LH complex of Rhodobacter sphaeroides. This peptide self-assembles with BChls to form B820 and, upon cooling and lowering OG concentration, forms red-shifted B850 spectral species that are considered analogous to native LH complexes. We find that LH1beta24 self-assembles with BChl in OG to form homodimeric B820-type subunits comprising two LH1beta24 and two BChl molecules per subunit. We demonstrate, by modeling the structure using the highly homologous structure of LH2 from Rhodospirillum molischianum, that it has the minimal size for BChl binding. Additionally, we have compared the self-assembly of sphbeta31 and LH1beta24 with BChls and discovered that the association enthalpies and entropies of both species are similar to those measured for native LH1 from Rhodospirillum rubrum. However, sphbeta31 readily aggregates into intermediate higher oligomeric species and further to form B850 species; moreover, the assembly process of these oligomers is not reversible, and they are apparently large nonspecific BChl-peptide coaggregates rather than well-defined nativelike LH complexes. Similar aggregates were observed during LH1beta24 assembly, but these were formed less readily and required lower temperatures than sphbeta31. In view of these results, we reevaluate previous in vitro reconstitution studies and propose alternative templates for new designs.  相似文献   

16.
B820 subunits from a purple sulfur bacterium Ectothiorhodospira haloalkaliphila strain ATCC 51935T were obtained by treatment of carotenoid free LH1-RC complexes of this bacterium with ß-octylglucopyranoside (ß-OG). The same complexes with 100% carotenoid content were unable to dißsociate to B820 subunits, but disintegrated to monomeric bacteriochlorophyll (BChl) regardless of their carotenoid composition. The degree of dissociation of the LH1-RC complexes with an intermediate content of carotenoids (the B820 formation) was directly dependent on the quantity of carotenoids in the samples. The resulting B820 subunits did not contain carotenoids. B820 subunits easily aggregated to form a complex with an absorption peak at 880 nm at decreased ß-OG concentration. Analysis of the spectra of the LH1-RC complexes isolated from the cells with different levels of carotenogenesis inhibition led to the conclusion of the heterogeneity of the samples with a predominance of them in (a) the fraction with 100% of carotenoids and (b) the fraction of carotenoid-free complexes.  相似文献   

17.
18.
Aaron M. Collins 《BBA》2009,1787(8):1050-61
The light-harvesting-reaction center (LHRC) complex from the chlorosome-lacking filamentous anoxygenic phototroph (FAP), Roseiflexus castenholzii (R. castenholzii) was purified and characterized for overall pigment organization. The LHRC is a single complex that is comprised of light harvesting (LH) and reaction center (RC) polypeptides as well as an attached c-type cytochrome. The dominant carotenoid found in the LHRC is keto-γ-carotene, which transfers excitation to the long wavelength antenna band with 35% efficiency. Linear dichroism and fluorescence polarization measurements indicate that the long wavelength antenna pigments absorbing around 880 nm are perpendicular to the membrane plane, with the corresponding Qy transition dipoles in the plane of the membrane. The antenna pigments absorbing around 800 nm, as well as the bound carotenoid, are oriented at a large angle with respect to the membrane. The antenna pigments spectroscopically resemble the well-studied LH2 complex from purple bacteria, however the close association with the RC makes the light harvesting component of this complex functionally more like LH1.  相似文献   

19.
The precise position of the upper exciton component and relevant vibronic transitions of the B850 ring in peripheral light-harvesting complexes from purple photosynthetic bacteria are important values for determining the exciton bandwidth and electronic structure of the B850 ring. To determine the presence of these components in wild-type LH2 complexes the pump-probe femtosecond transient spectra obtained with excitation into the 730-840 nm spectral range are analyzed. We show that at excitation wavelengths less than 780 nm B850 absorption bands are present and that, in accordance with exciton theory, these bands peak further in the blue when the lowest optically allowed transition is more red-shifted.  相似文献   

20.
The light-harvesting complex LH2 of Rubrivivax gelatinosus has an oligomeric structure built from alpha-beta heterodimers containing three bacteriochlorophylls and one carotenoid each. The alpha subunit (71 residues) presents a C-terminal hydrophobic extension (residues 51-71) which is prone to attack by an endogenous protease. This extension can also be cleaved by a mild thermolysin treatment, as demonstrated by electrophoresis and by matrix-assisted laser desorption-time of flight mass spectrometry. This cleavage does not affect the pigment binding sites as shown by absorption spectroscopy. Electron microscopy was used to investigate the structures of the native and thermolysin cleaved forms of the complexes. Two-dimensional crystals of the reconstituted complexes were examined after negative staining and cryomicroscopy. Projection maps at 10 A resolution were calculated, demonstrating the nonameric ring-like organization of alpha-beta subunits. The cleaved form presents the same structural features. We conclude that the LH2 complex is structurally homologous to the Rhodopseudomonas acidophila LH2. The hydrophobic C-terminal extension does not fold back in the membrane, but lays out on the periplasmic surface of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号