首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pigment—protein complexes in photosynthetic membranes exist mainly as aggregates that are functionally active as monomers but more stable due to their ability to dissipate excess energy. Dissipation of energy in the photosystem I (PSI) trimers of cyanobacteria takes place with a contribution of the long-wavelength chlorophylls whose excited state is quenched by cation radical of P700 or P700 in its triplet state. If P700 in one of the monomer complexes within a PSI trimer is oxidized, energy migration from antenna of other monomer complexes to cation radical of P700 via peripherally localized long-wave-length chlorophylls results in energy dissipation, thus protecting PSI complex of cyanobacteria against photodestruction. It is suggested that dissipation of excess absorbed energy in aggregates of the light-harvesting complex LHCII of higher plants takes place with a contribution of peripherally located chlorophylls and carotenoids.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1592–1599.Original Russian Text Copyright © 2004 by Karapetyan  相似文献   

2.
Karapetian NV 《Biofizika》2004,49(2):212-226
The structure of a complex of photosystem I (PSI) of cyanobacteria and the mechanisms of the functioning of the antenna and PSI reaction site were described. The complex of PSI in thylakoids of cyanobacteia is organized as a trimer whose antenna is enriched in long-wave chlorophylls. The energy absorbed by these chlorophyls migrates to P700, inducing its oxidation. Long-wave chlorophyls are also involved in the dissipation of excessive energy; both the cation radical of P700 and the triplet of P700 effectively quench the fluorescence of long-wave chlorophyll of PSI. The energy exchange between the antennas of monomers in the trimer of PSI stimulates the dissipation of electron excitation energy, protecting the complex against photodestruction. The kinetics of energy migration in the antenna and charge separation in the reaction site of PSI trimers was studied using subpicosecond spectroscopy. Long-wave chlorophylls of PSI do not substantially affect the energy migration in the heterogeneous antenna of PSI but slow down the capture of energy of P700. The separation of changes in the reaction site of PSI is the most rapid among the known reaction sites.  相似文献   

3.
In photosynthetic membranes of cyanobacteria, algae, and higher plants, photosystem I (PSI) mediates light-driven transmembrane electron transfer from plastocyanin or cytochrome c6 to the ferredoxin-NADP complex. The oxidoreductase function of PSI is sensitized by a reversible photooxidation of primary electron donor P700, which launches a multistep electron transfer via a series of redox cofactors of the reaction center (RC). The excitation energy for the functioning of the primary electron donor in the RC is delivered via the chlorophyll core antenna in the complex with peripheral light-harvesting antennas. Supermolecular complexes of the PSI acquire remarkably different structural forms of the peripheral light-harvesting antenna complexes, including distinct pigment types and organizational principles. The PSI core antenna, being the main functional unit of the supercomplexes, provides an increased functional connectivity in the chlorophyll antenna network due to dense pigment packing resulting in a fast spread of the excitation among the neighbors. Functional connectivity within the network as well as the spectral overlap of antenna pigments allows equilibration of the excitation energy in the depth of the whole membrane within picoseconds and loss-free delivery of the excitation to primary donor P700 within 20-40 ps. Low-light-adapted cyanobacteria under iron-deficiency conditions extend this capacity via assembly of efficiently energy coupled rings of CP43-like complexes around the PSI trimers. In green algae and higher plants, less efficient energy coupling in the eukaryotic PSI-LHCI supercomplexes is probably a result of the structural adaptation of the Chl a/b binding LHCI peripheral antenna that not only extends the absorption cross section of the PSI core but participates in regulation of excitation flows between the two photosystems as well as in photoprotection.  相似文献   

4.
Circular dichroism (CD) spectra of photosystem I (PSI) complexes of the cyanobacteria Thermosynechococcus elongatus, Arthrospira platensis and Synechocystis sp. PCC 6803 were studied. CD spectra of dark-adapted PSI trimers and monomers, measured at 77 K, show common bands at 669–670(+), 673(+), 680(−), 683–685(−), 696–697(−), 702(−) and 711(−) nm. The intensities of these bands are species specific. In addition, bands at 683–685(−) and 673(+) nm differ in intensity for trimeric and monomeric PSI complexes. CD difference spectra (P700+–P700) of PSI complexes at 283 K exhibit conservative bands at 701(−) and 691(+) nm due to changes in resonance interaction of chlorophylls in the reaction center upon oxidation of P700. Additional bands are observed at 671(−), 678(+), 685(−), 693(−) nm and in the region 720–725 nm those intensities correlate with intensities of analogous bands of antenna chlorophylls in dark-adapted CD spectra. It is suggested that the variability of CD difference spectra of PSI complexes is determined by changes in resonance interaction of reaction center chlorophylls with closely located antenna chlorophylls.  相似文献   

5.
Single-molecule fluorescence spectroscopy at 1.4K was used to investigate the spectral properties of red (long-wavelength) chlorophylls in trimeric Photosystem I (PSI) complexes from the cyanobacterium Arthrospira platensis. Three distinct red antenna states could be identified in the fluorescence spectra of single PSI trimers from A. platensis in the presence of oxidized P700. Two of them are responsible for broad emission bands centered at 726 and 760nm. These bands are similar to those found in bulk fluorescence spectra measured at cryogenic temperatures. The broad fluorescence bands at ?726 and ?760nm belong to individual emitters that are broadened by strong electron-phonon coupling giving rise to a large Stokes-shift of about 20nm and rapid spectral diffusion. An almost perpendicular orientation of the transition dipole moments of F726 and F760 has to be assumed because direct excitation energy transfer does not occur between F726 and F760. For the first time a third red state assigned to the pool absorbing around 708nm could be detected by its zero-phonon lines. The center of the zero-phonon line distribution is found at ?714nm. The spectral properties of the three red antenna states show a high similarity to the red antenna states found in trimeric PSI of Thermosynechoccocus elongatus. Based on these findings a similar organization of the red antenna states in PSI of these two cyanobacteria is discussed.  相似文献   

6.
The pathways of energy dissipation of excessive absorbed energy in cyanobacteria in comparison with that in higher plants are discussed. Two mechanisms of non-photochemical quenching in cyanobacteria are described. In one case this quenching occurs as light-induced decrease of the fluorescence yield of long-wavelength chlorophylls of the photosystem I trimers induced by inactive reaction centers: P700 cation-radical or P700 in triplet state. In the other case, non-photochemical quenching in cyanobacteria takes place with contribution of water-soluble protein OCP (containing 3′-hydroxyechinenone) that induces reversible quenching of allophycocyanin fluorescence in phycobilisomes. The possible evolutionary pathways of the involvement of carotenoid-binding proteins in non-photochemical quenching are discussed comparing the cyanobacterial OCP and plant PsbS protein. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 10, pp. 1385–1395.  相似文献   

7.
Two mechanisms of photoprotective dissipation of the excessively absorbed energy by photosynthetic apparatus of cyanobacteria are described that divert energy from reaction centers. Energy dissipation, monitored as nonphotochemical fluorescence quenching, occurs at different steps of energy transfer within the phycobilisomes or core antenna of photosystem I. Although these mechanisms differ significantly, in both cases, energy dissipates mainly from terminal emitters: allophycocyanin B or core membrane linker protein (LCM) in phycobilisomes, or the longest-wavelength chlorophylls in photosystem I antenna. It is supposed that carotenoid-induced energy dissipation in phycobilisomes is triggered by light-induced transformation of the nonquenched state of antenna into quenched state due to conformation changes caused by orange carotinoid-binding protein (OCP)–phycobilisome interaction. Fluorescence of the longest-wavelength chlorophylls of photosystem I antenna is strongly quenched by P700 cation radical or by P700 triplet state, dependent on redox state of the acceptor side cofactors of photosystem I.  相似文献   

8.
Light drives photosynthesis. In plants it is absorbed by light-harvesting antenna complexes associated with Photosystem I (PSI) and photosystem II (PSII). As PSI and PSII work in series, it is important that the excitation pressure on the two photosystems is balanced. When plants are exposed to illumination that overexcites PSII, a special pool of the major light-harvesting complex LHCII is phosphorylated and moves from PSII to PSI (state 2). If instead PSI is over-excited the LHCII complex is dephosphorylated and moves back to PSII (state 1). Recent findings have suggested that LHCII might also transfer energy to PSI in state 1. In this work we used a combination of biochemistry and (time-resolved) fluorescence spectroscopy to investigate the PSI antenna size in state 1 and state 2 for Arabidopsis thaliana. Our data shows that 0.7 ± 0.1 unphosphorylated LHCII trimers per PSI are present in the stroma lamellae of state-1 plants. Upon transition to state 2 the antenna size of PSI in the stroma membrane increases with phosphorylated LHCIIs to a total of 1.2 ± 0.1 LHCII trimers per PSI. Both phosphorylated and unphosphorylated LHCII function as highly efficient PSI antenna.  相似文献   

9.
Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI–LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI–LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI–LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI–LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~?12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~?675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.  相似文献   

10.
Photosystem I of cyanobacteria contains different spectral pools of chlorophylls called red or long-wavelength chlorophylls that absorb at longer wavelengths than the primary electron donor P700. We measured the fluorescence spectra at the ensemble and the single-molecule level at low temperatures in the presence of oxidized and reduced P700. In accordance with the literature, it was observed that the fluorescence is quenched by P700(+). However, the efficiency of the fluorescence quenching by oxidized P700(+) was found to be extremely different for the various red states in PS I from different cyanobacteria. The emission of the longest-wavelength absorbing antenna state in PS I trimers from Thermosynechococcus elongatus (absorption maximum at 5K: ≈ 719nm; emission maximum at 5K: ≈ 740nm) was found to be strongly quenched by P700(+) similar to the reddest state in PS I trimers from Arthrospira platensis emitting at 760nm at 5K. The fluorescence of these red states is diminished by more than a factor of 10 in the presence of oxidized P700. For the first time, the emission of the reddest states in A. platensis and T. elongatus has been monitored using single-molecule fluorescence techniques.  相似文献   

11.
The photosystem I complex organized in cyanobacterial membranes preferentially in trimeric form participates in electron transport and is also involved in dissipation of excess energy thus protecting the complex against photodamage. A small number of longwave chlorophylls in the core antenna of photosystem I are not located in the close vicinity of P700, but at the periphery, and increase the absorption cross-section substantially. The picosecond fluorescence kinetics of trimers resolved the fastest energy transfer components reflecting the equilibration processes in the core antenna at different redox states of P700. Excitation kinetics in the photosystem I bulk antenna is nearly trap-limited, whereas excitation trapping from longwave chlorophyll pools is diffusion-limited and occurs via the bulk antenna. Charge separation in the photosystem I reaction center is the fastest of all known reaction centers.  相似文献   

12.
13.
The energy transfer from the light-harvesting antenna chlorophylls to the reaction center molecules and subsequent charge separation were investigated using a difference picosecond spectrophotometer with selective excitation. The objects were the pigment-protein complexes of photosystem 1 (Chl/P700 = 60) isolated from bean leaves. The difference absorption spectra of the excited states of light-harvesting antenna chlorophylls and the P700 photooxidation were measured. It was shown that the excited states of antenna chlorophylls were generated within 10 ps and deactivated with three-component kinetics: tau 1 = 20--45 ps, tau 2 = 100--300 ps, tau 3 greater than 500 ps. The process of the P700 photooxidation induced by the 650 nm exciting pulse was approximately monoexponential with tau equal to 15--30 ps. It is established that the P700 photooxidation is due to the efficient transfer of excitation energy from antenna chlorophylls to reaction centers.  相似文献   

14.
The energy transfer and trapping kinetics in the core antenna of Photosystem I are described in a new model in which the distance between the core antenna chlorophylls and P700 is proposed to be considerably longer than the distance between the chlorophylls within the antenna. Structurally, the model describes the Photosystem I core antenna as a regular sphere around P700, while energetically it consists of three levels representing the bulk antenna, P700 and the red-shifted antenna pigments absorbing at longer wavelength than P700, respectively. It is shown that the model explains experimental results obtained from the Photosystem I complex of the cyanobacterium Synechococcus sp. (A.R. Holzwarth, G. Schatz, H Brock, and E. Bittersman (1993) Biophys. J. 64: 1813–1826) quite well, and that no unrealistic charge separation rate and organization of the long-wavelength pigments has to be assumed. We suggest that excitation energy transfer and trapping in Photosystem I should be described as a ‘transfer-to-the-trap’-limited process  相似文献   

15.
Identical time-resolved fluorescence measurements with ~ 3.5-ps resolution were performed for three types of PSI preparations from the green alga, Chlamydomonas reinhardtii: isolated PSI cores, isolated PSI–LHCI complexes and PSI–LHCI complexes in whole living cells. Fluorescence decay in these types of PSI preparations has been previously investigated but never under the same experimental conditions. As a result we present consistent picture of excitation dynamics in algal PSI. Temporal evolution of fluorescence spectra can be generally described by three decay components with similar lifetimes in all samples (6–8 ps, 25–30 ps, 166–314 ps). In the PSI cores, the fluorescence decay is dominated by the two fastest components (~ 90%), which can be assigned to excitation energy trapping in the reaction center by reversible primary charge separation. Excitation dynamics in the PSI–LHCI preparations is more complex because of the energy transfer between the LHCI antenna system and the core. The average trapping time of excitations created in the well coupled LHCI antenna system is about 12–15 ps longer than excitations formed in the PSI core antenna. Excitation dynamics in PSI–LHCI complexes in whole living cells is very similar to that observed in isolated complexes. Our data support the view that chlorophylls responsible for the long-wavelength emission are located mostly in LHCI. We also compared in detail our results with the literature data obtained for plant PSI.  相似文献   

16.
Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the functioning of the PSI complex, like the protein composition of the complex in the plant Arabidopsis thaliana, the function of these subunits and the mechanism by which nuclear-encoded subunits can be inserted into or transported through the thylakoid membrane. Furthermore, the structure of the native PSI complex in several oxygenic photosynthetic organisms and the role of the chlorophylls and carotenoids in the antenna complexes in light harvesting and photoprotection are reviewed. The special role of the ‘red’ chlorophylls (chlorophyll molecules that absorb at longer wavelength than the primary electron donor P700) is assessed. The physiology and mechanism of the association of the major light-harvesting complex of photosystem II (LHCII) with PSI during short term adaptation to changes in light quality and quantity is discussed in functional and structural terms. The mechanism of excitation energy transfer between the chlorophylls and the mechanism of primary charge separation is outlined and discussed. Finally, a number of regulatory processes like acclimatory responses and retrograde signalling is reviewed with respect to function of the thylakoid membrane. We finish this review by shortly discussing the perspectives for future research on PSI.  相似文献   

17.
《BBA》2020,1861(11):148274
In higher-plant Photosystem I (PSI), the majority of “red” chlorophylls (absorbing at longer wavelengths than the reaction centre P700) are located in the peripheral antenna, but contradicting reports are given about red forms in the core complex. Here we attempt to clarify the spectroscopic characteristics and quantify the red forms in the PSI core complex, which have profound implication on understanding the energy transfer and charge separation dynamics. To this end we compare the steady-state absorption and fluorescence spectra and picosecond time-resolved fluorescence kinetics of isolated PSI core complex and PSI–LHCI supercomplex from Pisum sativum recorded at 77 K. Gaussian decomposition of the absorption spectra revealed a broad band at 705 nm in the core complex with an oscillator strength of three chlorophylls. Additional absorption at 703 nm and 711 nm in PSI–LHCI indicated up to five red chlorophylls in the peripheral antenna. Analysis of fluorescence emission spectra resolved states emitting at 705, 715 and 722 nm in the core and additional states around 705–710 nm and 733 nm in PSI–LHCI. The red states compete with P700 in trapping excitations in the bulk antenna, which occurs on a timescale of ~20 ps. The three red forms in the core have distinct decay kinetics, probably in part determined by the rate of quenching by the oxidized P700. These results affirm that the red chlorophylls in the core complex must not be neglected when interpreting kinetic experimental results of PSI.  相似文献   

18.
Phycobilisomes (PBS) are the major photosynthetic antenna complexes in cyanobacteria and red algae. In the red microalga Galdieria sulphuraria, action spectra measured separately for photosynthetic activities of photosystem I (PSI) and photosystem II (PSII) demonstrate that PBS fraction attributed to PSI is more sensitive to stress conditions and upon nitrogen starvation disappears from the cell earlier than the fraction of PBS coupled to PSII. Preillumination of the cells by actinic far-red light primarily absorbed by PSI caused an increase in the amplitude of the PBS low-temperature fluorescence emission that was accompanied by the decrease in PBS region of the PSI 77 K fluorescence excitation spectrum. Under the same conditions, fluorescence excitation spectrum of PSII remained unchanged. The amplitude of P700 photooxidation in PBS-absorbed light at physiological temperature was found to match the fluorescence changes observed at 77 K. The far-red light adaptations were reversible within 2-5min. It is suggested that the short-term fluorescence alterations observed in far-red light are triggered by the redox state of P700 and correspond to the temporal detachment of the PBS antenna from the core complexes of PSI. Furthermore, the absence of any change in the 77 K fluorescence excitation cross-section of PSII suggests that light energy transfer from PBS to PSI in G. sulphuraria is direct and does not occur through PSII. Finally, a novel photoprotective role of PBS in red algae is discussed.  相似文献   

19.
The data on the organization and function of the photosystem I pigment-protein complexes of the cyanobacterium Spirulina and the characteristics of pigment antenna of the photosystem I monomeric and trimeric core complexes are presented and discussed. We proved that the photosystem I complexes in the cyanobacterial membrane pre-exist mainly as trimers, though both types of complexes contribute to the photosynthetic electron transport. In contrast to monomers, the antenna of the photosystem I trimeric complexes of Spirulina contains the extreme long-wave chlorophyll form absorbing at 735 nm and emitting at 760 nm (77 K). The intensity of fluorescence at 760 nm depends strongly on the P700 redox state: it is maximum with the reduced P700 and strongly decreased with the oxidized P700 which is the most efficient quencher of fluorescence at 760 nm. The energy absorbed by the extreme long-wave chlorophyll form is active in the photooxidation of P700 in the trimeric complex. The data obtained indicate that the long-wave form of chlorophyll originates from interaction of the chlorophyll molecules localized on monomeric subunits forming the photosystem I trimer. Kinetic analysis of the P700 photooxidation and light-induced quenching of fluorescence at 760 nm (77 K) allows the suggestion that the excess energy absorbed by the antenna monomeric subunits within the trimer migrates via the extreme long-wave chlorophyll to the P700 cation radical and is quenched, which prevents the photodestruction of the pigment-protein complex.  相似文献   

20.
《Biophysical journal》2020,118(2):337-351
Cyanobacterial photosystem I (PSI) functions as a light-driven cyt c6-ferredoxin/oxidoreductase located in the thylakoid membrane. In this work, the energy and charge transfer processes in PSI complexes isolated from Thermosynechococcus elongatus via conventional n-dodecyl-β-D-maltoside solubilization (DM-PSI) and a, to our knowledge, new detergent-free method using styrene-maleic acid copolymers (SMA-PSI) have been investigated by pump-to-probe femtosecond laser spectroscopy. In DM-PSI preparations excited at 740 nm, the excitation remained localized on the long-wavelength chlorophyll forms within 0.1–20 ps and revealed little or no charge separation and oxidation of the special pair, P700. The formation of ion-radical pair P700+A1 occurred with a characteristic time of 36 ps, being kinetically controlled by energy transfer from the long-wavelength chlorophyll to P700. Quite surprisingly, the detergent-free SMA-PSI complexes upon excitation by these long-wave pulses undergo an ultrafast (<100 fs) charge separation in ∼45% of particles. In the remaining complexes (∼55%), the energy transfer to P700 occurred at ∼36 ps, similar to the DM-PSI. Both isolation methods result in a trimeric form of PSI, yet the SMA-PSI complexes display a heterogenous kinetic behavior. The much faster rate of charge separation suggests the existence of an ultrafast pathway for charge separation in the SMA-PSI that may be disrupted during detergent isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号