首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, various 1-substituted and 1,3-disubstituted β-carboline derivatives were synthesized by a modified single-step Pictet-Spengler reaction. The compounds were examined for cytotoxicity and anti-inflammatory activity, as measured by the inhibition of prostaglandin E(2) (PGE(2)) production and nitric oxide (NO) production. While only two compounds (28 and 31) showed marginal cytotoxicity against four human cancer cell lines, most of the tested compounds exhibited potent inhibitory activity of both NO and PGE(2) production. Moreover, compounds 6 and 16 significantly reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2), suggesting that β-carboline analogs can inhibit NO and PGE(2) production at the translational level. In addition, several of the β-carboline derivatives (1, 2, 4-8, 11, 13, 22, 25, 27, 31, and 41-43) displayed significant inhibitory activity of superoxide anion (O(2)(·-)) generation or elastase release compared to the reference compound, with 6 being the most potent. N-Formyl-L-methionyl-phenylalanine (FMLP)-induced phosphorylation of c-JunN-terminal kinase (JNK) and protein kinase B (AKT) were also inhibited by 6, suggesting that it suppresses human neutrophil functions by inhibiting the activation of JNK and AKT signaling pathways. Therefore, the synthetic 1-benzoyl-3-carboxy β-carboline analogs may have great potential to be developed as anti-inflammatory agents.  相似文献   

2.
A series of coumarin derivatives were synthesized in two steps from phloroglucinol. The anti-inflammatory activities of these derivatives were evaluated by means of inhibiting NO production in LPS-induced RAW 264.7 cells. Derivatives 3, 8, 10, 11, and 13 exhibited low micromolar levels of anti-inflammatory activities, and these derivatives also protected DNA against hydroxyl radical attack. Coumarin derivative 8 was the most potent derivative among those tested herein against NO production in LPS-induced RAW 264.7 cells with an IC(50) value of 7.6 microM, and it effectively reduced the hydroxyl radical production by 50% at 100 microM in the electron spin resonance study.  相似文献   

3.
Tetrahydrobiopterin (BH4) serves as a critical co-factor for the endothelial nitric-oxide synthase (eNOS). A deficiency of BH4 results in eNOS uncoupling, which is associated with increased superoxide and decreased NO* production. BH4 has been suggested to be a target for oxidation by peroxynitrite (ONOO-), and ascorbate has been shown to preserve BH4 levels and enhance endothelial NO* production; however, the mechanisms underlying these processes remain poorly defined. To gain further insight into these interactions, the reaction of ONOO- with BH4 was studied using electron spin resonance and the spin probe 1-hydroxy-3-carboxy-2,2,5-tetramethyl-pyrrolidine. ONOO- reacted with BH4 6-10 times faster than with ascorbate or thiols. The immediate product of the reaction between ONOO- and BH4 was the trihydrobiopterin radical (BH3.), which was reduced back to BH4 by ascorbate, whereas thiols were not efficient in recycling of BH4. Uncoupling of eNOS caused by peroxynitrite was investigated in cultured bovine aortic endothelial cells (BAECs) by measuring superoxide and NO* using spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine and the NO*-spin trap iron-diethyldithiocarbamate. Bolus ONOO-, the ONOO- donor 3-morpholinosydnonimine, and an inhibitor of BH4 synthesis (2,4-diamino-6-hydroxypyrimidine) uncoupled eNOS, increasing superoxide and decreasing NO* production. Exogenous BH4 supplementation restored endothelial NO* production. Treatment of BAECs with both BH4 and ascorbate prior to ONOO- prevented uncoupling of eNOS by ONOO-. This study demonstrates that endothelial BH4 is a crucial target for oxidation by ONOO- and that the BH4 reaction rate constant exceeds those of thiols or ascorbate. We confirmed that ONOO- uncouples eNOS by oxidation of tetrahydrobiopterin and that ascorbate does not fully protect BH4 from oxidation but recycles BH3. radical back to BH4.  相似文献   

4.
There is evidence that nitric oxide (NO) formation in adult cardiomyocytes stimulated with lipopolysaccharide (LPS) is not commensurate with iNOS levels. Tetrahydrobiopterin (BH(4)) is a key factor in the stabilization and NO production by iNOS homodimer. Thus we hypothesized that BH(4) is a limiting factor for NO production in adult cardiomyocytes in response to LPS and cytokines (TNF-alpha, IL-1, IFN-gamma alone, or mixed). It was verified that LPS and cytokines induced iNOS expression which did not translate into increased nitrite or [(14)C]citrulline production. This response coincided with defective BH(4) synthesis and low GTP cyclohydrolase activity. Furthermore, supplementation with BH(4) and ascorbate failed to increase iNOS activity. This effect was related to preferential accumulation of BH(2) rather than BH(4) in these cells. Uncoupled iNOS activity in stimulated cells was examined using mitochondrial aconitase activity as an endogenous marker of superoxide anion radical (O(2)(-)) formation, and found not to be significantly inhibited. 2-Hydroxyethidium also was not significantly increased. We conclude that adult cardiomyocytes are an unlikely source of NO and O(2)(-) in inflammatory conditions. This finding adds a new and unexpected layer of complexity to our understanding of the responses of the adult heart to inflammation.  相似文献   

5.
GTP cyclohydrolase I (GTPCH) catalyzes the first step in pteridine biosynthesis in Nocardia sp. strain NRRL 5646. This enzyme is important in the biosynthesis of tetrahydrobiopterin (BH4), a reducing cofactor required for nitric oxide synthase (NOS) and other enzyme systems in this organism. GTPCH was purified more than 5,000-fold to apparent homogeneity by a combination of ammonium sulfate fractionation, GTP-agarose, DEAE Sepharose, and Ultragel AcA 34 chromatography. The purified enzyme gave a single band for a protein estimated to be 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme was estimated to be 253 kDa by gel filtration, indicating that the active enzyme is a homo-octamer. The enzyme follows Michaelis-Menten kinetics, with a Km for GTP of 6.5 micromoles. Nocardia GTPCH possessed a unique N-terminal amino acid sequence. The pH and temperature optima for the enzyme were 7.8 and 56 degrees C, respectively. The enzyme was heat stable and slightly activated by potassium ion but was inhibited by calcium, copper, zinc, and mercury, but not magnesium. BH4 inhibited enzyme activity by 25% at a concentration of 100 micromoles. 2,4-Diamino-6-hydroxypyrimidine (DAHP) appeared to competitively inhibit the enzyme, with a Ki of 0.23 mM. With Nocardia cultures, DAHP decreased medium levels of NO2- plus NO3-. Results suggest that in Nocardia cells, NOS synthesis of nitric oxide is indirectly decreased by reducing the biosynthesis of an essential reducing cofactor, BH4.  相似文献   

6.
We have studied the impact of two novel compounds TO-85 (2,6-di-(alpha-aziridino-alpha-hydroxyiminomethyl)pyridine and TO-133 (bis-(diaziridinoglyoximato)copper), designed as NO donors, on nitrite production by cell cultures, NO production in rat tissues and their ability to inhibit purified NO synthases (NOS). Both substances induced considerable increase of nitrite production in cell cultures. When NO production was assayed in rat organs by means of ESR using Fe(DETC) as a spin trap the anticipated NO-increasing activity of TO-85 was observed only in kidneys; the NO level increasing almost 10-fold. Treatment of rats with TO-133, decreased the NO concentration in brain cortex, cerebellum and liver. When the drugs were administered to animals with high level of iNOS expression induced by LPS, TO-85 did not significantly modify the LPS-induced NO production; administration of TO-133 caused a significant decrease of NO production in blood, brain cortex and cerebellum. Only high concentrations of TO-85 were capable of inhibiting iNOS (IC50=7 mM), the substance inhibited eNOS at lower concentrations (IC50=250 microM). Inhibitory activities of TO-85 on nNOS were dependent on BH4 concentrations, suggesting eventual competition of TO-85 with BH4 when the substance interacts with nNOS. TO-133 reduced eNOS activity with IC50=200 microM, nNOS activity with IC50=200 microM, iNOS activity was not much affected by this substance. Thus, the two tested compounds manifest opposite effects on NO production by purified enzymes and in cell culture. The pattern of the NO synthesis modification in a living animal appears to be even more complex. Our results stress the importance of direct measurements of NO in the tissues using the ESR method.  相似文献   

7.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by endothelial nitric oxide synthase (eNOS), and endothelial BH4 bioavailability is a critical factor in regulating the balance between NO and superoxide production (eNOS coupling). Biosynthesis of BH4 is determined by the activity of GTP-cyclohydrolase I (GTPCH). However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but whether DHFR is functionally important in maintaining eNOS coupling remains unclear. To investigate the mechanism by which DHFR might regulate eNOS coupling in vivo, we treated wild-type, BH4-deficient (hph-1), and GTPCH-overexpressing (GCH-Tg) mice with methotrexate (MTX), to inhibit BH4 recycling by DHFR. MTX treatment resulted in a striking elevation in BH2 and a decreased BH4:BH2 ratio in the aortas of wild-type mice. These effects were magnified in hph-1 but diminished in GCH-Tg mice. Attenuated eNOS activity was observed in MTX-treated hph-1 but not wild-type or GCH-Tg mouse lung, suggesting that inhibition of DHFR in BH4-deficient states leads to eNOS uncoupling. Taken together, these data reveal a key role for DHFR in regulating the BH4 vs BH2 ratio and eNOS coupling under conditions of low total biopterin availability in vivo.  相似文献   

8.
5,6,7,8-Tetrahydrobiopterin (BH(4)) is an essential cofactor of nitric oxide synthases (NOSs). Oxidation of BH(4), in the setting of diabetes and other chronic vasoinflammatory conditions, can cause cofactor insufficiency and uncoupling of endothelial NOS (eNOS), manifest by a switch from nitric oxide (NO) to superoxide production. Here we tested the hypothesis that eNOS uncoupling is not simply a consequence of BH(4) insufficiency, but rather results from a diminished ratio of BH(4) vs. its catalytically incompetent oxidation product, 7,8-dihydrobiopterin (BH(2)). In support of this hypothesis, [(3)H]BH(4) binding studies revealed that BH(4) and BH(2) bind eNOS with equal affinity (K(d) approximately 80 nM) and BH(2) can rapidly and efficiently replace BH(4) in preformed eNOS-BH(4) complexes. Whereas the total biopterin pool of murine endothelial cells (ECs) was unaffected by 48-h exposure to diabetic glucose levels (30 mM), BH(2) levels increased from undetectable to 40% of total biopterin. This BH(2) accumulation was associated with diminished calcium ionophore-evoked NO activity and accelerated superoxide production. Since superoxide production was suppressed by NOS inhibitor treatment, eNOS was implicated as a principal superoxide source. Importantly, BH(4) supplementation of ECs (in low and high glucose-containing media) revealed that calcium ionophore-evoked NO bioactivity correlates with intracellular BH(4):BH(2) and not absolute intracellular levels of BH(4). Reciprocally, superoxide production was found to negatively correlate with intracellular BH(4):BH(2). Hyperglycemia-associated BH(4) oxidation and NO insufficiency was recapitulated in vivo, in the Zucker diabetic fatty rat model of type 2 diabetes. Together, these findings implicate diminished intracellular BH(4):BH(2), rather than BH(4) depletion per se, as the molecular trigger for NO insufficiency in diabetes.  相似文献   

9.
Synthesis of 6(R)-5,6,7,8-tetrahydrobiopterin (BH(4)), a required cofactor for inducible nitric-oxide synthase (iNOS) activity, is usually coordinately regulated with iNOS expression. In C6 glioma cells, tumor necrosis factor-alpha (TNF-alpha) concomitantly potentiated the stimulation of nitric oxide (NO) and BH(4) production induced by IFN-gamma and interleukin-1beta. Expression of both iNOS and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in the BH(4) biosynthetic pathway, was also markedly increased, as were their activities and protein levels. Ceramide, a sphingolipid metabolite, may mediate some of the actions of TNF-alpha. Indeed, we found that bacterial sphingomyelinase, which hydrolyzes sphingomyelin and increases endogenous ceramide, or the cell permeable ceramide analogue, C(2)-ceramide, but not C(2)-dihydroceramide (N-acetylsphinganine), significantly mimicked the effects of TNF-alpha on NO production and iNOS expression and activity in C6 cells. Surprisingly, although TNF-alpha increased BH(4) synthesis and GTPCH activity, neither BH(4) nor GTPCH expression was affected by C(2)-ceramide or sphingomyelinase in IFN-gamma- and interleukin-1beta-stimulated cells. It is likely that increased BH(4) levels results from increased GTPCH protein and activity in vivo rather than from reduced turnover of BH(4), because the GTPCH inhibitor, 2,4-diamino-6-hydroxypyrimidine, blocked cytokine-stimulated BH(4) accumulation. Moreover, expression of the GTPCH feedback regulatory protein, which if decreased might increase GTPCH activity, was not affected by TNF-alpha or ceramide. Treatment with the antioxidant pyrrolidine dithiocarbamate, which is known to inhibit NF-kappaB and sphingomyelinase in C6 cells, or with the peptide SN-50, which blocks translocation of NF-kappaB to the nucleus, inhibited TNF-alpha-dependent iNOS mRNA expression without affecting GTPCH mRNA levels. This is the first demonstration that cytokine-stimulated iNOS and GTPCH expression, and therefore NO and BH(4) biosynthesis, may be regulated by discrete pathways. As BH(4) is also a cofactor for the aromatic amino acid hydroxylases, discovery of distinct mechanisms for regulation of BH(4) and NO has important implications for its specific functions.  相似文献   

10.
Exogenous nitric oxide (NO) suppresses endothelium-derived NO production. We were interested in determining whether this is also the case in flow-induced endothelium-derived NO production. If so, then is the mechanism because of intracellular depletion of tetrahydrobiopterin [BH4; a cofactor of NO synthase (NOS)], which results in superoxide production by uncoupled NOS? Isolated canine femoral arteries were perfused with 100 microM S-nitroso-N-acetylpenicillamine (SNAP; an NO donor) and/or 64 microM BH4. Perfusion of SNAP suppressed flow-induced NO production, which was evaluated as a change in the slope of the linear relationship between perfusion rate and NO production rate (P < 0.02 vs. control; n = 7). Subsequent BH4 perfusion returned the slope to the control level. Concomitant perfusion of SNAP and BH4 retained the control-level NO production (n = 7). Concomitant perfusion of SNAP and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron; 1 mM; a membrane-permeable superoxide scavenger) also retained the control-level NO production (n = 7), whereas perfusion of Tiron after SNAP could not return the NO production to the control level (P < 0.02 vs. control; n = 7). We also found a significant decrease in BH4 concentration in the endothelial cells after SNAP perfusion. In conclusion, these results indicate that exogenous NO suppresses the flow-induced, endothelium-derived NO production by superoxide released from uncoupled NOS because of intracellular BH4 depletion.  相似文献   

11.
Mast cells (MC) are biologically potent, ubiquitously distributed immune cells with fundamental roles in host integrity and disease. MC diversity and function is regulated by exogenous nitric oxide; however, the production and function of endogenously produced NO in MC is enigmatic. We used rat peritoneal MC (PMC) as an in vivo model to examine intracellular NO production. Live cell confocal analysis of PMC using the NO-sensitive probe diaminofluorescein showed distinct patterns of intracellular NO formation with either antigen (Ag)/IgE (short term) or interferon-gamma (IFN-gamma) (long term). Ag/IgE-induced NO production is preceded by increased intracellular Ca2+, implying constitutive nitric-oxide synthase (NOS) activity. NO formation inhibits MC degranulation. NOS has obligate requirements for tetrahydrobiopterin (BH4), a product of GTP-cyclohydrolase I (CHI), IFN-gamma-stimulated PMC increased CHI mRNA, protein, and enzymatic activity, while decreasing CHI feedback regulatory protein mRNA, causing sustained NO production. Treatment with the CHI inhibitor, 2,4-diamino-6-hydroxypyrimidine, inhibited NO in both IFN-gamma and Ag/IgE systems, increasing MC degranulation. Reconstitution with the exogenous BH4 substrate, sepiapterin, restored NO formation and inhibited exocytosis. Thus, Ag/IgE and IFN-gamma induced intracellular NO plays a key role in MC mediator release, and alterations in NOS activity via BH4 availability may be critical to the heterogeneous responsiveness of MC.  相似文献   

12.
Nitric oxide (NO) synthesis is induced in vascular smooth muscle cells by lipopolysaccharide (LPS) where it appears to mediate a variety of vascular dysfunctions. In some cell types tetrahydrobiopterin (BH4) synthesis has also been found to be induced by cytokines. Because BH4 is a cofactor for NO synthase, we investigated whether BH4 synthesis is required for LPS-induced NO production in rat aortic smooth muscle cells (RASMC). The total biopterin content (BH4 and more oxidized states) of untreated RASMC was below our limit of detection. However, treatment with LPS caused a significant rise in biopterin levels and an induction of NO synthesis; both effects of LPS were markedly potentiated by interferon-gamma. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a selective inhibitor of GTP cyclohydrolase I, the rate-limiting enzyme for de novo BH4 synthesis, completely abolished the elevated biopterin levels induced by LPS. DAHP also caused a concentration-dependent inhibition of LPS-induced NO synthesis. Inhibition of NO synthesis by DAHP was reversed by sepiapterin, an agent which circumvents the inhibition of biopterin synthesis by DAHP by serving as a substrate for BH4 synthesis via the pterin salvage pathway. The reversal by sepiapterin was overcome by methotrexate, an inhibitor of the pterin salvage pathway. Sepiapterin, and to a lesser extent BH4, dose-dependently enhanced LPS-induced NO synthesis, indicating that BH4 concentration limits the rate of NO production by LPS-activated RASMC. Sepiapterin also caused LPS-induced NO synthesis to appear with an abbreviated lag period phase, suggesting that BH4 availability also limits the onset of NO synthesis. In contrast to the stimulation of LPS-induced NO synthesis, observed when sepiapterin was given alone, sepiapterin became a potent inhibitor of NO synthesis in the presence of methotrexate. This is attributable to a direct inhibitory action of sepiapterin on GTP cyclohydrolase I, an activity which is only revealed after blocking the metabolism of sepiapterin to BH4. Further studies with sepiapterin, methotrexate, and N-acetylserotonin (an inhibitor of the BH4 synthetic enzyme, sepiapterin reductase) indicated that the BH4 is synthesized in RASMC predominantly from GTP; however, a lesser amount may derive from pterin salvage. We demonstrate that BH4 synthesis is an absolute requirement for induction of NO synthesis by LPS in vascular smooth muscle. Our findings also suggest that pterin synthesis inhibitors may be useful for the therapy of endotoxin- and cytokine-induced shock.  相似文献   

13.
9-Alkyl and 9-heteroalkyl substituted derivatives of the 2-amino-6-guanidinopurine were synthesized by alkylation of 2-amino-6-chloropurine and subsequent guanidinolysis. The activity of the thus prepared compounds on murine macrophages was examined. Compounds 4a, 4b, and 4d inhibit the LPS+IFN-gamma-induced NO production in murine macrophages while compound 4h stimulates this production.  相似文献   

14.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

15.
Tetrahydrobiopterin (BH(4)) is an essential cofactor of endothelial nitric oxide (NO) synthase and when depleted, endothelial dysfunction results with decreased production of NO. BH(4) is also an anti-oxidant being a good "scavenger" of oxidative species. NADPH oxidase, xanthine oxidase, and mitochondrial enzymes producing reactive oxygen species (ROS) can induce elevated oxidant stress and cause BH(4) oxidation and subsequent decrease in NO production and bioavailability. In order to define the process of ROS-mediated BH(4) degradation, a sensitive method for monitoring pteridine redox-state changes is required. Considering that the conventional fluorescence method is an indirect method requiring conversion of all pteridines to oxidized forms, it would be beneficial to use a rapid quantitative assay for the individual detection of BH(4) and its related pteridine metabolites. To study, in detail, the BH(4) oxidative pathways, a rapid direct sensitive HPLC assay of BH(4) and its pteridine derivatives was adapted using sequential electrochemical and fluorimetric detection. We examined BH(4) autoxidation, hydrogen peroxide- and superoxide-driven oxidation, and Fenton reaction hydroxyl radical-driven BH(4) transformation. We demonstrate that the formation of the primary two-electron oxidation product, dihydrobiopterin (BH(2)), predominates with oxygen-induced BH(4) autoxidation and superoxide-catalyzed oxidation, while the irreversible metabolites, pterin and dihydroxanthopterin (XH(2)), are largely produced during hydroxyl radical-driven BH(4) oxidation.  相似文献   

16.
Series of carbamate and thiocarbamate derivatives were designed and synthesized and their inhibitory activities of NO production in lipopolysaccharide-activated macrophages were evaluated. Several thoicarbamate derivatives revealed promising inhibitory activity. The structure-activity relationship study of these compounds is also reported. Among these compounds, compound 12b was the most potent with 6.5 μM of IC(50). They inhibited NO production through the suppression of iNOS protein and mRNA expression and nuclear translocation of p65.  相似文献   

17.
We hypothesized that transient high-glucose concentration interferes with mediation by nitric oxide (NO) of flow-induced dilation (FID) of arterioles due to enhanced production of superoxide. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles ( approximately 130 microm) after transient high-glucose treatment (tHG; incubation with 30 mM glucose for 1 h), FID was reduced (maximum: control, 38 +/- 4%; after tHG, 17 +/- 3%), which was not further diminished by the NO synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME; 18 +/- 2%). Correspondingly, an enhanced polyethylene-glycol-SOD (PEG-SOD)-sensitive superoxide production was detected after tHG in carotid arteries by dihydroethydine (DHE) staining. Presence of PEG-SOD during tHG prevented the reduction of FID (41 +/- 3%), which could be inhibited by l-NAME (20 +/- 4%). Administration of PEG-SOD after tHG did not prevent the reduction of FID (22 +/- 3%). Sepiapterin, a precursor of the NO synthase cofactor tetrahydrobiopterin (BH(4)), administered during tHG did not prevent the reduction of FID (maximum, 15 +/- 5%); however, it restored FID when administered after tHG (32 +/- 4%). Furthermore, inhibition of either glycolysis by 2-deoxyglucose or mitochondrial complex II by 2-thenoyltrifluoroacetone reduced the tHG-induced DHE-detectable enhanced superoxide production in carotid arteries and prevented FID reduction in arterioles (39 +/- 5 and 35 +/- 2%). Collectively, these findings suggest that in skeletal muscle arterioles, a transient elevation of glucose via its increased metabolism, elicits enhanced production of superoxide, which decreases the bioavailability of NO and the level of the NOS cofactor BH(4), resulting in a reduction of FID mediated by NO.  相似文献   

18.
Ascorbic acid enhances NO bioactivity in patients with vascular disease through unclear mechanism(s). We investigated the role of intracellular ascorbic acid in endothelium-derived NO bioactivity. Incubation of porcine aortic endothelial cells (PAECs) with ascorbic acid produced time- and dose-dependent intracellular ascorbic acid accumulation that enhanced NO bioactivity by 70% measured as A23187-induced cGMP accumulation. This effect was due to enhanced NO production because ascorbate stimulated both PAEC nitrogen oxide (NO(2)(-) + NO(3)(-)) production and l-arginine to l-citrulline conversion by 59 and 72%, respectively, without altering the cGMP response to authentic NO. Ascorbic acid also stimulated the catalytic activity of eNOS derived from either PAEC membrane fractions or baculovirus-infected Sf9 cells. Ascorbic acid enhanced bovine eNOS V(max) by approximately 50% without altering the K(m) for l-arginine. The effect of ascorbate was tetrahydrobiopterin (BH(4))-dependent, because ascorbate was ineffective with BH(4) concentrations >10 microm or in PAECs treated with sepiapterin to increase intracellular BH(4). The effect of ascorbic acid was also specific because A23187-stimulated cGMP accumulation in PAECs was insensitive to intracellular glutathione manipulation and only ascorbic acid, not glutathione, increased the intracellular concentration of BH(4). These data suggest that ascorbic acid enhances NO bioactivity in a BH(4)-dependent manner by increasing intracellular BH(4) content.  相似文献   

19.
The endogenous methylarginines asymmetric dimethylarginine (ADMA) and N(G)-monomethyl-L-arginine (L-NMMA) regulate nitric oxide (NO) production from neuronal NO synthase (nNOS). Under conditions of L-arginine or tetrahydrobiopterin (BH(4)) depletion, nNOS also generates superoxide, O(2)(.); however, the effects of methylarginines on this O(2)(.) generation are poorly understood. Therefore, we measured the dose-dependent effects of ADMA and L-NMMA on the rate and amount of O(2)(.) production from nNOS under conditions of L-arginine and/or BH(4) depletion, using electron paramagnetic resonance spin trapping. In the absence of L-arginine, ADMA (1 microm) inhibited O(2)(.) generation by approximately 60% from a rate of 56 to 23 nmol/mg/min, whereas L-NMMA (0.1-100 microm) had no effect. L-Arginine markedly decreased the observed O(2)(.) adduct formation; however, O(2)(.) generation from the enzyme still occurs at a low rate (12.1 nmol/mg/min). This O(2)(.) leak is NOS-derived as it is not seen in the absence of calcium and calmodulin and demonstrates that O(2)(.) generation from NOS occurs even when normal substrate/ cofactor levels are present. Under conditions of BH(4) depletion, ADMA had no effect on O(2)(.), whereas L-NMMA increased O(2)(.) production almost 3-fold. This O(2)(.) generation was >90% inhibited by imidazole, indicating that it occurred at the heme center. Thus, methylarginines can profoundly shift the balance of NO and O(2)(.) generation from nNOS. These observations have important implications with regard to the therapeutic use of methylarginine-NOS inhibitors in the treatment of disease.  相似文献   

20.
Tetrahydrobiopterin (BH(4)) is an essential co-factor for the nitric-oxide (NO) synthases, and in its absence these enzymes produce superoxide (O(2)(·-)) rather than NO. The rate-limiting enzyme for BH(4) production is guanosine triphosphate cyclohydrolase-1 (GTPCH-1). Because endogenously produced NO affects T cell function, we sought to determine whether antigen stimulation affected T cell GTPCH-1 expression and ultimately BH(4) levels. Resting T cells had minimal expression of inducible NOS (NOS2), endothelial NOS (NOS3), and GTPCH-1 protein and nearly undetectable levels of BH(4). Anti-CD3 stimulation of T cells robustly stimulated the coordinated expression of NOS2, NOS3, and GTPCH-1 and markedly increased both GTPCH-1 activity and T cell BH(4) levels. The newly expressed GTPCH-1 was phosphorylated on serine 72 and pharmacological inhibition of casein kinase II reduced GTPCH-1 phosphorylation and blunted the increase in T cell BH(4). Inhibition of GTPCH-1 with diaminohydroxypyrimidine (1 mmol/liter) prevented T cell BH(4) accumulation, reduced NO production, and increased T cell O(2)(·-) production, due to both NOS2 and NOS3 uncoupling. GTPCH-1 inhibition also promoted TH(2) polarization in memory CD4 cells. Ovalbumin immunization of mice transgenic for an ovalbumin receptor (OT-II mice) confirmed a marked increase in T cell BH(4) in vivo. These studies identify a previously unidentified consequence of T cell activation, promoting BH(4) levels, NO production, and modulating T cell cytokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号