首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Constitutive and gamma-induced ADP-ribosylation of nuclei and mitochondrial proteins in 2- and 29-month-old rats was studied. ADP-ribosylation was determined by binding of [3H]-adenin with the proteins after incubation of cellular organells in reaction mixture supplemented with [adenin-2,8-3H]-NAD. It was detected that the level of total protein ADP-ribosylation in the nuclei is 4.5-6.2 times higher than in the mitochondria. By inhibition of poly(ADP-ribose) polymerase (PARP) with 3-aminobenzamidine and treatment of ADP-ribosylated proteins with phosphodiesterase I, it was demonstrated that about 90% of [3H]-adenin bound by proteins in the nuclei and 70% in the mitochondria was the result of PARP activity. The level of total ADP-ribosylation of nuclear and mitochondrial proteins in the tissues of old rats was reliably lower than in young animals. This reduction of ADP-ribosylation in old animals is the result of the lower activity of PARP, not of mono(ADP-ribosyl) transferase (MART). The level of ADP-ribosylation of proteins in the nuclei of brain and spleen cells of 2-month-old rats irradiated with of 5 and 10 Gy was by 49-109% higher than in the control. At the same doses of radiation, the level of ADP-ribosylation of nuclear proteins in brain and spleen of old rats increased only by 29-65% compared to the control. Unlike cell nuclei, the radiation-induced activation of ADP-ribosylation in mitochondria was less expressed: the level of ADP-ribosylation increased by 34-37% in young rats and by 11-27% in old animals. This increased binding of ADP-ribose residues by the proteins of nuclei and mitochondria from tissues of gamma-irradiated rats is exceptionally conditioned by activation of poly(ADP-ribosyl)ation because the level of mono(ADP-ribosyl)ation remains constant. The results of this study enable the suggestion that poly(ADP-ribosyl)ation also occurs in the mitochondria of brain and spleen cells of the gamma-irradiated rats, though less pronounced than in cell the cell nuclei of these tissues. Thus, one of the probable causes of the less efficient repair of radiation-induced DNA damage in old organisms is a decline of both constitutive and induced poly(ADP-ribosyl)ation of proteins in cell nucleus and mitochondria.  相似文献   

2.
The PCR amplification of fragments of transcribed (beta-actin, p53) and nontranscribed (IgE, heavy chain) genes in brain and spleen DNA from gamma-irradiated and unirradiated 2- and 28-month-old rats was studied. The amplification levels of fragments of these genes in DNA from old rats were substantially lower than those from young rats, which suggested that these gene fragments in old-rat DNA contained lesions blocking thermostable polymerase in PCR. The beta-actin and IgE gene fragments of spleen DNA from old rats exhibited a significantly higher level of lesions inhibiting Tth polymerase compared to analogous fragments of brain DNA from the same animals. DNA from the tissues of gamma-irradiated rats showed the amount of damage inhibiting amplification to be dependent on animal age and the postirradiation time before DNA isolation. As judged from the changes in the amplification level of gene fragments, there was no preferential fast repair of lesions in the actively transcribed gene beta-actin compared to the nontranscribed gene IgE (heavy chain) in the brain and spleen of gamma-irradiated young and old rats. The amplification results suggest that equal amounts of DNA lesions were repaired in the brain of both old and young rats during the first 0.5 h of the postirradiation time (fast-repair phase), whereas in the subsequent postirradiation period over 5 h (slow-repair phase), the efficiency of damage elimination in the brain DNA of old rats was markedly lower. As for the spleen tissue, the elimination of lesions blocking Tth polymerase was much lower in old gamma-irradiated animals for both of the repair phases.  相似文献   

3.
4.
Adenosine phosphate and creatine phosphate amount was determined in the brain tissue of 3-4-week, 6-8 month and 26-26 month old mongrel female rats. The maximum ATP and creatine phosphate amount and the minimum of ADP and AMP were found in young rats. In adult rats as compared with the young the ATP amount is the same, the ADP and AMP level rises, that of creative phosphate falls and energy charge decreases. In the brain of old rats the ATP and ADP amount falls, that of creatine phosphate and AMP remains at the level of mature-age animals. Despite a decrease in the ATP amount in the brain at the old age, the Mg, DNP- ATPase activity of mitochondria isolated from brain cortex and stem of the old rats remains at the level typical of adult animals.  相似文献   

5.
Changes in the number of mitochondrial DNA (mtDNA) copies in the brain and spleen tissues of gamma-irradiated (3 Gy) mice were studied by comparative analysis of the long-extension PCR products of mtDNA (15.9 kb) and a fragment of the cluster nuclear beta-globin gene (8.7 kb) amplified simultaneously in one and the same test-tube within total DNA. The analysis showed that, compared to the nuclear beta-globin gene, an increase in mtDNA copy number (polyploidization) took place in the brain and spleen cells of mice exposed to gamma-radiation. This data led to the suggestion that the major mechanism for maintenance of the mitochondrial genome, which is constantly damaged by endogenous ROS and easily affected by ionizing radiation or other exogenous factors, is the induction of synthesis of new mtDNA copies on intact or little affected mtDNA templates because the repair systems in the mitochondria function at a low level of efficiency.  相似文献   

6.
The quantitative levels and phosphorylation states of the high mobility group (HMG) of proteins were investigated in bone marrow, brain, heart, kidney, liver, pancreas, spleen, testis and thymus of three groups of male Fischer 344 rats. Two groups of rats, young ad libitum (Y/AL - 1 1/2 mo.) and old ad libitum (O/AL - 28 mo.), had free access to rat chow, and a third group of old rats were maintained on a caloric restricted intake (O/CR - 28 mo.). The quantities of HMGs 1,2,14 and 17 were significantly reduced in O/AL rats compared with Y/AL rats in all tissues examined, and in many cases, the amount of HMGs of O/CR rats were increased by varying degrees from O/AL animals. In G2-phase nuclei of bone marrow, spleen and testis, phosphorylation of HMG proteins was reduced significantly in O/AL rats, but was enhanced in O/CR animals (especially HMG14). These levels of HMGs in O/CR animals, altered by age and diet dependent factors, reflect a condition which is more reminiscent of Y/AL than O/AL animals.  相似文献   

7.
Mitochondrial DNA (mtDNA) mutations increase with age. However, the number of cells with predominantly mutated mtDNA is small in old animals. Here a new hypothesis is proposed: mtDNA fragments may insert into nuclear DNA contributing to aging and related diseases by alterations in the nucleus. Real-time PCR quantification shows that sequences of cytochrome oxidase III and 16S rRNA from mtDNA are present in highly purified nuclei from liver and brain in young and old rats. The sequences of these insertions revealed that they contain single nucleotide polymorphisms identical to those present in mtDNA of the same animal. Interestingly, the amount of mitochondrial sequences in nuclear DNA increases with age in both tissues. In situ hybridization of mtDNA to nuclear DNA confirms the presence of mtDNA sequences inside nuclear DNA in rat hepatocytes. Bone marrow metaphase cells from both young and old rats show mtDNA at centromeric regions in 20 out of the 2n = 40 chromosomes. Consequently, mitochondria can be a major trigger of aging but the final target could also be the nucleus.  相似文献   

8.
The ability of post-radiation (4 Gy) bystander chemosignals (the volatile components of mouse urine) to distantly modulate the humoral immune response to the sheep red blood cells in the spleen and popliteal lymph nodes of intact recipients has been investigated. It was shown that the exposure of animals to chemosignals before antigen injection resulted in the decrease and increase of the immune response in the spleen and lymph nodes, respectively. When animals were exposed to chemosignals after the antigenic stimulus, an increased immune response was observed in both spleen and lymph nodes. The contribution of radiation-induced bystander signaling in the response of socially organized animals to the effect of ionizing irradiation is discussed.  相似文献   

9.
The intensity of proteolytic processes and qualitative composition of autolysis products of the brain, liver and testicle tissues of young and old rats were studied. The gel-chromatographic analysis (Sephadex G-15 and G-50) revealed no considerable amount of high-molecular peptides (1500 Da and over) before and after autolysis. The measurement of the quantity of free amino groups in the gel-chromatographic fraction after the complete acid hydrolysis has confirmed that result. The low-molecular peptides and free amino acids, are the main products of the tissue autolysis. The intensity of proteolytic processes, determined by an increase in the amount of amino acids depends on the autolysis duration and age of animals. The total increment of amino acids in the brain and liver tissues of old animals for the first hour of autolysis has been higher by 102 and 219% as compared to young ones. The autolysis of testicles of the young and old animals after the first hour of incubation is characterized by the same intensivity. Such a regularity is not revealed when analyzing the same processes by the Lowry method.  相似文献   

10.
The distribution of high mobility group (HMG) proteins has been studied in the liver, brain, kidney, lung, spleen, testis, thymus, and heart of young (19 weeks) and old (118 weeks) rats. These proteins were extracted with perchloric acid, fractionated by CM-Sephadex column chromatography, and analysed by acetic acid-urea polyacrylamide slab gel electrophoresis. As compared with that in young rats, the level of total HMG proteins in the old increased in liver and lung, decreased in thymus, heart, brain, and kidney, and remained unchanged in spleen and testis. In particular, the levels of HMG 1 and 2 were maximum in the thymus of young rats and dropped drastically in the old. However, the amount of HMG 17 was high in the spleen of both young and old rats, though it was comparatively higher in the former. Such age-dependent variation in the level of HMG proteins of different tissues denotes indirectly differences in the functional state of chromatin, and in growth and activity of cells, during aging.  相似文献   

11.
Muscle atrophy is associated with a loss of muscle fiber nuclei, most likely through apoptosis. We investigated age-related differences in the extent of apoptosis in soleus muscle of young (6 mo) and old (32 mo) male Fischer 344 x Brown Norway rats subjected to acute disuse atrophy induced by 14 days of hindlimb suspension (HS). HS-induced atrophy (reduction in muscle weight and cross-sectional area) was associated with loss of myofiber nuclei in soleus muscle of young, but not old, rats. This resulted in a significant decrease in the myonuclear domain (cross-sectional area per nucleus) in young and old rats, with changes being more pronounced in old animals. Levels of apoptosis (TdT-mediated dUTP nick end labeling and DNA fragmentation) were higher in soleus muscles of old control rats than young animals. Levels were significantly increased with HS in young and old rats, with the greatest changes in old animals. Caspase-3 activity in soleus muscle tended to be increased with age, but changes were not statistically significant (P=0.052). However, with HS, caspase-3 activity significantly increased in young, but not old, rats. Immunohistochemistry showed that the proapoptotic endonuclease G (EndoG, a mitochondrion-specific nuclease) was localized in the subsarcolemmal mitochondria in control muscles, and translocation to the nucleus occurred in old, but not young, control animals. There was no difference between EndoG total protein content in young and old control rats, but EndoG increased almost fivefold in soleus muscle of old, but not young, rats after HS. These results show that deregulation of myonuclear number occurs in old skeletal muscle and that the pathways involved in apoptosis are distinct in young and old muscles. Apoptosis in skeletal muscle is partly mediated by the subsarcolemmal mitochondria through EndoG translocation to the nucleus in response to HS.  相似文献   

12.
The understanding of the involvement of mitochondrial oxidative phosphorylation (OXPHOS) in the aging process has often been biased by the different methodological approaches as well as the choice of the biological material utilized by the various groups. In the present paper, we have carried out a detailed analysis of several bioenergetic parameters and oxidative markers in brain and heart mitochondria from young (2 months) and old (28 months) rats. This analysis has revealed an age-related decrease in respiratory fluxes in brain but not in heart mitochondria. The age-related decrease in respiratory rate (-43%) by NAD-dependent substrates was associated with a consistent decline (-40%) of complex I activity in brain mitochondria. On the other hand, heart mitochondria showed an age-related decline of complex II activity. Both tissues showed, however, an age-associated accumulation of oxidative damage. We have then performed the same analysis on old (28 months) rats subjected to a long-term (16 months) diet containing the antioxidant N-acetylcysteine (NAC). The treated old rats showed a slight brain-specific improvement of mitochondrial energy production efficiency, mostly with NAD-dependent substrates, together with a decrease in carbonyl protein content and an increase in the amount of protein thiols of brain cytosolic fraction. A full recovery of complex II activity was detected in heart mitochondria from NAC-treated old rats. The present work documents the marked tissue specificity of the decline of bioenergetic functions in isolated mitochondria from aged rats and provides the first data on the effects of a long-term treatment with N-acetylcysteine.  相似文献   

13.
The effects of supplementation with selenous yeast and ionizing radiation on selenium (Se) content and distribution were evaluated in rat tissues (liver, kidney, spleen, heart, muscle, blood, front brain, hind brain, hypothalamus, pituitary, adrenal glands, testes, and hair). This study had 16 Se-supplemented (0.5 μg Se/d) and 16 placebo adult male Wistar rats. One half of the animals (eight Se-supplemented and eight placebos) were irradiated with a single dose of 4.2 Gy from a Co-60 source and sacrificed 7 d after irradiation along with nonirradiated animals and analyzed for Se content determination. The data obtained showed that selenous yeast supplementation increased Se levels in rat tissues (highest increases in hypothalamus, 161%; hind brain, 126%; spleen, 110%; and adrenal gland, 105%). Ionizing radiation induced significant changes in Se content and distribution (decrease in liver, blood, hair, femoral muscle, spleen, and hypothalamus; increase in kidney, testes, adrenal glands, and brain of placebo group). Supplementation with selenous yeast reduces changes in Se content and distribution after irradiation. It seems that the animal tissue susceptibility to oxidative damage may be correlated to their ability to retain Se in tissues.  相似文献   

14.
We have used alkaline elution to study the repair of X-ray-induced DNA strand breaks in vivo in two fibrosarcoma tumors and in several normal mouse tissues after whole-body irradiation of mice with 10-12.5 Gy of X rays. Both tumors were found to repair damage significantly faster and to a greater extent than any of the normal tissues, so that by 2 hr after irradiation the level of damage in both tumors was indistinguishable from unirradiated control values. Of the normal tissues studied, liver repaired the fastest. The kinetics for the other normal tissues were essentially the same, showing an appreciable level (7-16%) of unrepaired lesions still evident after 2 hr. Even as late as 12 hr there was a significant amount of residual damage in some tissues, with testes and spleen showing the greatest level (ca. 15%). The repair kinetics for each tissue were not appropriately described by a sum of two exponentials. In contrast, previously reported data for many homogeneous mammalian cell systems in vitro and for some tissues in vivo have shown biphasic repair kinetics. This difference may be related to heterogeneity of both cell type and environment within the tissue populations used in the investigation. The faster repair of DNA strand breaks by tumor cells relative to cells from normal tissues was not readily explainable in terms of such radiobiological parameters as overall tissue oxygenation or sulfhydryl content. Rather, it appears that the degree of differentiation of the cells within the tissue population may be a major determinant of repair proficiency. Based on a model incorporating a competition between repair and fixation of sublethal lesions, these data are consistent with the idea that tumor cells may have a repair, and hence survival, advantage over normal cells in response to ionizing radiation.  相似文献   

15.
The aim of this study was to compare rat tissues with respect to their reactive oxygen and nitrogen species (RONS) generating activities as a function of age. We quantified the RONS generation in vivo in young (6 months) and in old (30 months) male Sprague-Dawley rats using the recently developed spin trap 1-hydroxy-3-carboxy-pyrrolidine, applied intravenously. This spin trap reacts with superoxide radical and peroxynitrite yielding a stable spin adduct which is detectable by means of electron paramagnetic resonance (EPR) spectroscopy in frozen tissues. In old rats RONS generation was significantly increased compared to their young counterparts in the following order: blood相似文献   

16.
V F Myslitski? 《Ontogenez》1989,20(3):327-331
Newborn female rats were androgenized, and the reaction of neurons of brain septum on excessive quantity of exogenous androgens, introduced during so-called "crucial" period of formation of centers of gonadotropic regulation of sexual cycles, has been studied in 3, 5, 7, 10, 20, 30, and 60 days old animals. Morphometry of brain septum cell nuclei revealed that most neuron nuclei shrink after androgenization. Monoamine content was significantly increased in septum nuclei of experimental animals. Neonatal androgenization led to the increased capacity of septal complex neurons to bind 3H-estradiol and to the decreased 3H-testosterone binding. The data obtained suggest that the brain septum neurons of female rats depend on sex steroids, particularly during "crucial" period of development.  相似文献   

17.
The biological mechanisms responsible for aging remain poorly understood. We propose that increases in DNA damage and mutations that occur with age result from a reduced ability to repair DNA damage. To test this hypothesis, we have measured the ability to repair DNA damage in vitro by the base excision repair (BER) pathway in tissues of young (4-month-old) and old (24-month-old) C57BL/6 mice. We find in all tissues tested (brain, liver, spleen and testes), the ability to repair damage is significantly reduced (50-75%; P<0.01) with age, and that the reduction in repair capacity seen with age correlates with decreased levels of DNA polymerase beta (beta-pol) enzymatic activity, protein and mRNA. To determine the biological relevance of this age-related decline in BER, we measured spontaneous and chemically induced lacI mutation frequency in young and old animals. In line with previous findings, we observed a three-fold increase in spontaneous mutation frequency in aged animals. Interestingly, lacI mutation frequency in response to dimethyl sulfate (DMS) does not significantly increase in young animals whereas identical exposure in aged animals results in a five-fold increase in mutation frequency. Because DMS induces DNA damage processed by the BER pathway, it is suggested that the increased mutagenicity of DMS with age is related to the decline in BER capacity that occurs with age. The inability of the BER pathway to repair damages that accumulate with age may provide a mechanistic explanation for the well-established phenotype of DNA damage accumulation with age.  相似文献   

18.
The proteolysis rate of the total liver, brain and testicle homogenates from young and old rats was studied by proteolytic enzymes. The level of autolytic destruction of brain and liver proteins decreases with aging. The total liver, brain and testicle proteins of young animals are splitted by pronase faster than the proteins of the old ones. Addition of reduced glutathione to the reaction mixture causes an increase in the rate of liver and brain proteins splitting by pronase in old rats up to the level determined for the young animals. At the same time the effect of glutathione on the testicle tissue of old animals was not observed.  相似文献   

19.
The influence of daily fractional irradiation of male Wistar rats for 30 days on DNA-protein cross-links (DPC) in spleen, thymus, and liver cells was studied. The level of DPC depended strongly on the daily dose of irradiation and the studied organ. After irradiation at dose 0.5 Gy per day increased DPC level was detected in all organs. The highest level was in the lymphoid organs and the lowest in the liver. After irradiation at dose 0.3 Gy per day DPC formation was detected only in the thymus. The data suggest the existence of a dose threshold for DPC formation during fractional irradiation.  相似文献   

20.
During long-term fractionated irradiation (0.5 Gy, daily) the molecular weight of single-stranded DNA of the thymus of exposed rats remained the same as that of intact animals till the dose of 25 Gy had been cumulated. The integrity of the DNA structure was ensured by the repair of DNA and elimination of cells with unrepaired lesions. The role of repair decreased and the elimination of cells increased with increasing cumulative dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号