首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mutant (furA3) was isolated from the S1 wild-type strain of Nectria haematococca on the basis of its resistance to 5-fluorouracil (5FU). This mutant has greatly reduced activity of uracil phosphoribosyltransferase, a pyrimidine salvage enzyme catalyzing the synthesis of UMP from uracil. The metabolism of 5FU was examined in both strains by using 19F nuclear magnetic resonance spectroscopy. In the S1 strain, 5FU appears to be metabolized by two pathways operating simultaneously: (i) conversion to fluoronucleotides and (ii) degradation into alpha-fluoro-beta-alanine. The furA3 mutant shows metabolic changes consistent with a uracil phosphoribosyltransferase lesion, since it takes up 5FU and forms a small amount of alpha-fluoro-beta-alanine but does not synthesize fluoronucleotides. Since pigment synthesis is strongly enhanced by 5FU in the S1 wild-type strain but not in the furA3 mutant, these results support the hypothesis that 5FU stimulation of secondary metabolism in N. haematococca is not mediated by the drug itself but involves a phosphorylated anabolite.  相似文献   

2.
F nuclear magnetic resonance spectroscopy was used to study the metabolism of 5-fluorouracil in four strains of Nectria haematococca which displayed similar sensitivities to growth inhibition by this compound but differed in their pigmentation. The major metabolites, 5-fluorouridine and alpha-fluoro-beta-alanine, were excreted into the medium by all four strains. The classical ribofluoronucleotides (5-fluorouridine-5'-monophosphate, -diphosphate, and -triphosphate) and alpha-fluoro-beta-alanine were identified in the acid-soluble fraction of perchloric acid extracts of mycelia. Two hydrolysis products of 5-fluorouracil incorporated into RNA were found in the acid-insoluble pool. They were unambiguously assigned to 5-fluorouridine-2'-monophosphate and 3'-monophosphate with specific hydrolysis reactions on isolated RNA. The lack of fluorodeoxyribonucleotides and the fact that the four strains incorporated similar amounts of fluororibonucleotides into their RNAs strongly suggest an RNA-directed mechanism of cytotoxicity for 5-fluorouracil. The heavily pigmented wild type differed from the three low-pigmented strains in its low uptake of 5-fluorouracil and, consequently, in its reduced biosynthesis of 5-fluorouridine and alpha-fluoro-beta-alanine. At present, it is not clear whether this change in 5-fluorouracil metabolism is a side effect of pigment production or results from another event.  相似文献   

3.
The 19F NMR spectrum of Escherichia coli tRNA1Val in which [5-19F]uridine replaces 93% of all uridine and uridine-derived residues has been examined at 93.6 and 235 MHz. The resolution of 11 peaks and visibility of two additional shoulders at either frequency for the 14 FUra residues in the molecule attests to the excellence of 19F as a probe for the structure of tRNA1Val in solution. No significant gain in resolution was attained at the higher frequency. A comparison of the relative areas in the different regions of the 19F spectrum of mixed [FUra]tRNAs with that of [FUra]tRNA1Val suggests that the three single resonances at lowest field in the region 86.5 to 88.5 ppm upfield from trifluoroacetate correspond to the three invariant bases which form tertiary hydrogen bonds in all tRNAs, namely, 8 (U or s4U), 54 (T), and 55 (phi) in unsubstituted tRNAs.  相似文献   

4.
A mycelial suspension of Nectria haematococca completely demethylated 0.1 mM pisatin in 2 h in a medium free of other carbon sources while no demethylation of pisatin by the fungus occurred in 6 h when 2% glucose was in the medium. Prior exposure of the fungal cells to pisatin in glucosefree medium markedly enhanced the rate of pisatin demethylation, with maximum stimulation occurring 5–9h after the initial exposure. The stimulation of pisatin demethylating ability was relatively specific for pisatin as the inducer. Out of a large variety of isoflavonoids tested the only compounds other than pisatin that stimulated the activity significantly were pterocarpan or isoflavan derivatives. Protoplasts with pisatin demethylating ability were isolated from pisatin-treated mycelium. Attempts to obtain a cell-free system with pisatin demethylating ability from these protoplasts were unsuccessful.  相似文献   

5.
19F nuclear magnetic resonance is used in conjunction with 5,5'-difluoro-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBapta), a fluorinated calcium chelator, to report steady-state intracellular free calcium levels ([Ca2+]i) in populations of resting, quiescent, isolated adult heart cells. 31P nuclear magnetic resonance shows that 5FBapta-loaded cells maintain normal intracellular high-energy phosphates, pH, and free Mg2+. The intracellular free calcium concentration of well perfused, isolated heart cells is 61 +/- 5 nM, measured with 5FBapta, which has a dissociation constant (Kd) for calcium chelation of 500 nM. A similar value is obtained with Quin-MF, another fluorinated calcium chelator with Kd and maximum calcium sensitivity at 80 nM. We find that the steady-state level of intracellular free calcium is increased by decreased extra-cellular sodium concentration, omission of extracellular magnesium, decreased extracellular pH, hyperglycemia, and upon treatment with lead acetate. Further, extracellular ATP caused a large transient increase in [Ca2+]i. Thus, while heart cells maintain a very low level of intracellular free Ca2+, acute alterations in extracellular environment can cause derangement of calcium homeostasis, resulting in measurable increases in [Ca2+]i.  相似文献   

6.
We used isomeric fluorotoluenes as model substrates to study the catabolism of toluene by five deuteromycete fungi and one ascomycete fungus capable of growth on toluene as the sole carbon and energy source, as well as by two fungi (Cunninghamella echinulata and Aspergillus niger) that cometabolize toluene. Whole cells were incubated with 2-, 3-, and 4-fluorotoluene, and metabolites were characterized by (19)F nuclear magnetic resonance. Oxidation of fluorotoluene by C. echinulata was initiated either at the aromatic ring, resulting in fluorinated o-cresol, or at the methyl group to form fluorobenzoate. The initial conversion of the fluorotoluenes by toluene-grown fungi occurred only at the side chain and resulted in fluorinated benzoates. The latter compounds were the substrate for the ring hydroxylation and, depending on the fluorine position, were further metabolized up to catecholic intermediates. From the (19)F nuclear magnetic resonance metabolic profiles, we propose that diverse fungi that grow on toluene assimilate toluene by an initial oxidation of the methyl group.  相似文献   

7.
The use of 19F nuclear magnetic resonance (n.m.r.) spectroscopy as a probe of anticodon structure has been extended by investigating the effects of tetranucleotide binding to 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 (anticodon FAC). 19F n.m.r. spectra were obtained in the absence and presence of different concentrations of oligonucleotides having the sequence GpUpApX (X = A,G,C,U), which contain the valine codon GpUpA. Structural changes in the tRNA were monitored via the 5-fluorouracil residues located at positions 33 and 34 in the anticodon loop, as well as in all other loops and stems of the molecule. Binding of GpUpApA, which is complementary to the anticodon and the 5'-adjacent FUra 33, shifts two resonances in the 19F spectrum. One, peak H (3.90 p.p.m.), is also shifted by GpUpA and was previously assigned to FUra 34 at the wobble position of the anticodon. The effects of GpUpApA differ from those of GpUpA in that the tetranucleotide induces the downfield shift of a second resonance, peak F (4.5 p.p.m.), in the 19F spectrum of 19F-labeled tRNA(Val)1. Evidence that the codon-containing oligonucleotides bind to the anticodon was obtained from shifts in the methyl proton spectrum of the 6-methyladenosine residue adjacent to the anticodon and from cleavage of the tRNA at the anticodon by RNase H after binding dGpTpApA, a deoxy analog of the ribonucleotide codon. The association constant for the binding of GpUpApA to fluorinated tRNA(Val)1, obtained by Scatchard analysis of the n.m.r. results, is in good agreement with values obtained by other methods. On the basis of these results, we assign peak F in the 19F n.m.r. spectrum of 19F-labeled tRNA(Val)1 to FUra 33. This assignment and the previous assignment of peak H to FUra 34 are supported by the observation that the intensities of peaks F and H in the 19F spectrum of fluorinated tRNA(Val)1 are specifically decreased after partial hydrolysis with nucleass S1 under conditions leading to cleavage in the anticodon loop. The downfield shift of peak F occurs only with adenosine in the 3'-position of the tetranucleotide; binding of GpUpApG, GpUpApC, or GpUpApU results only in the upfield shift of peak H. The possibility is discussed that this base-specific interaction between the 3'-terminal adenosine and the 5-fluorouracil residue at position 33 involves a 5'-stacked conformation of the anticodon loop. Evidence also is presented for a temperature-dependent conformational change in the anticodon loop below the melting temperature of the tRNA.  相似文献   

8.
M Brauer  B D Sykes 《Biochemistry》1986,25(8):2187-2191
G-Actin is a globular protein (Mr 42 300) known to have three cysteine residues that are at least partially exposed and chemically reactive (Cys-10, -284, and -374). When G-actin was reacted with 3-bromo-1,1,1-trifluoropropanone, three resolvable 19F resonances were observed in the 19F NMR spectrum. This fluorinated G-actin derivative remained fully polymerizable, and its 31P NMR spectrum was not significantly different from that of unmodified G-actin, indicating that the chemical modification did not denature the actin and the modified residues do not interfere with the extent of polymerization or the binding of adenosine 5'-triphosphate. One of the three 19F resonances was assigned to fluorinated Cys-374 on the basis of its selective reaction with N-ethylmaleimide. This resonance was dramatically broadened after polymerization of fluorinated G-actin, while the other two resonances were not markedly broadened or shifted. Thus, Cys-10 and -284 are not involved in or appreciably affected by the polymerization of G-actin, while the mobility of the 19F label at Cys-374 is markedly reduced.  相似文献   

9.
10.
Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a (19)F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific (19)F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on (19)F spins, a standard curve for (19)F-tfmF chemical shifts was drawn for varying solvent H(2)O/D(2)O ratios. Further site-specific (19)F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.  相似文献   

11.
19F nuclear magnetic resonance (NMR) spectroscopy was used to study "communication" between the catalytic and regulatory subunits in aspartate transcarbamoylase of Escherichia coli. Hybrid enzymes composed of fluorotyrosine-labeled regulatory subunits and native catalytic subunits or of native regulatory subunits and fluorotyrosine-labeled catalytic subunits were constructed and shown to have the allosteric kinetic properties of native enzyme. These hybrids exhibited the ligand-promoted "global" conformational changes characteristic of native aspartate transcarbamoylase and alterations in the NMR spectrum when ligands bind to the active site. The NMR difference spectrum caused by the binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to the hybrid containing 19F-labeled regulatory chains consisted of two troughs and a peak, suggesting that two tyrosines in the regulatory polypeptide chains were affected by the binding of ligand to the catalytic subunits. The increase in magnitude of the peak appeared to depend directly on the fractional saturation of the active sites. A peak with two distinct shoulders was observed in the 19F NMR spectrum of the hybrid containing fluorotyrosine in the catalytic chains when it was saturated with the ligand, whereas the spectrum for the unliganded enzyme consisted of a single peak. The NMR difference spectrum showed that the bisubstrate ligand perturbed at least two resonances, and these changes appeared to be tightly linked to the binding of the ligand.  相似文献   

12.
Human hexokinase enzyme IV (EC 2.7.1.1) catalyzes the phosphorylation of glucose and regulates the level of glucose. This enzyme exhibits strong positive cooperativity due to an allosteric transition between an inactive form and a closed active form. This form can be stabilized by activators and, thus, can increase its turnover by a kinetic memory effect characterized by a slow decay to the inactive state. The structural details of this kinetic allostery are known. Several synthetic activators have been reported. We present a preliminary nuclear magnetic resonance (NMR) screening of a chemical library in search of molecules with some affinity for glucokinase (GK). The library, composed of eight molecules with known activity as well as molecules that display no interaction, has been tested using the FAXS (fluorine chemical shift anisotropy and exchange for screening) method, based on monitoring the R2 relaxation of the 19F spin. To ensure a valid interaction measurement, the enzyme was placed in the presence of glucose and magnesium. The binding signal of one known fluorinated ligand was measured by determining the displacement of the known ligand. This simple measure of the 19F signal intensity after an 80-ms spin echo correlates nicely with the EC50, opening a route for NMR screening of GK activators.  相似文献   

13.
19F nuclear magnetic resonance (n.m.r.) relaxation parameters of 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 were measured and used to characterize the internal mobility of individual 5-fluorouridine (FUrd) residues in terms of several models of molecular motion. Measured relaxation parameters include the spin-lattice (T1) relaxation time at 282 MHz, the 19F(1H) NOE at 282 MHz, and the spin-spin (T2) relaxation time, estimated from linewidth data at 338 MHz, 282 MHz and 84 MHz. Dipolar and chemical shift anisotropy contributions to the 19F relaxation parameters were determined from the field-dependence of T2. The results demonstrate a large chemical shift anisotropy contribution to the 19F linewidths at 282 and 338 MHz. Analysis of chemical shift anisotropy relaxation data shows that, relative to overall tumbling of the macromolecule, negligible torsional motion occurs about the glycosidic bond of FUrd residues in 19F-labeled tRNA(Val)1, consistent with the maintenance of base-base hydrogen-bond and/or stacking interactions at all fluorouracil residues in the molecule. The dipolar relaxation data are analyzed by using the "two-state jump" and "diffusion in a cone" formalisms. Motional amplitudes (theta) are interpreted as being due to pseudorotational fluctuations within the ribose ring of the fluorinated nucleoside. These amplitudes range from approximately 30 degrees to 60 degrees, assuming a correlation time (tau i,2) of 1.6 ns. By using available 19F n.m.r. assignment data for the 14 FUrd residues in 5-fluorouracil-substituted tRNA(Val)1, these motional amplitudes can be correlated directly with the environmental domain of the residue. Residues located in tertiary and helical structural domains show markedly less motion (theta approximately equal to 30 to 35 degrees) than residues located in loops (theta approximately equal to 45 to 60 degrees). A correlation between residue mobility and solvent exposure is also demonstrated. The amplitudes of internal motion for specific residues agree quite well with those derived from X-ray diffraction and molecular dynamics data for yeast tRNA(Phe).  相似文献   

14.
15.
Fluorinated organic compounds, although rare in nature, are significant environmental contaminants owing to the numerous applications for which this class of compounds is employed. It is important that biodegradation of these compounds can be readily assessed in order to provide information on their fate in the environment. Fluorine-19 nuclear magnetic resonance (19F NMR) spectroscopy has emerged as a very useful technique to readily determine the catabolism of fluorinated aromatic compounds by microorganisms, either in whole cell or cell-free systems. The principal advantage of this technique is that fluorinated compounds can be observed directly in the culture supernatant or enzyme assay, without purification or derivatization. In this review an account of the application of 19F NMR in the study of microbial metabolism of organofluorine compounds is presented.  相似文献   

16.
An 19F NMR probe has been attached to the reactive sulfhydryl SH1 of the globular heads of rabbit skeletal heavy meromyosin. It serves as a sensitive monitor of the conformational state of the heads of heavy meromyosin in a manner similar to that seen for subfragment-1 (Shriver, J.W., and Sykes, B.D. (1982) Biochemistry 21, 3022-3028; Tollemar, U., Cunningham, K., and Shriver, J.W. (1986) Biochim. Biophys. Acta 873, 243-251). The NMR spectra indicate that there are at least two states for the heads in the SH1 region. The energetics of the interconversion of the two states of heavy meromyosin (HMM) differs significantly from that of S-1. In HMM in the absence of divalent cations, there are two reversible paths between the low temperature and high temperature states with a hysteresis-like behavior. One path is consistent with the head groups behaving independently and similar to S-1 alone. The second path indicates a coupling of the globular head region observed in S-1 with a second region forming a distinctly different cooperative unit. Upon addition of Ca(II) the hysteresis effect is lost and only the second cooperative unit is observed. Two explanations are offered for these results: the globular heads in HMM may couple with the S-2 segment, or the two globular heads of HMM may couple to form a larger cooperative unit. The ability to stabilize the larger cooperative unit with a divalent metal ion implicates a role for the LC2 light chain in coupling regions of the myosin molecule.  相似文献   

17.
18.
Y Xu  P Tang  L Firestone    T T Zhang 《Biophysical journal》1996,70(1):532-538
Whether proteins or lipids are the primary target sites for general anesthetic action has engendered considerable debate. Recent in vivo studies have shown that the S(+) and R(-) enantiomers of isoflurane are not equipotent, implying involvement of proteins. Bovine serum albumin (BSA), a soluble protein devoid of lipid, contains specific binding sites for isoflurane and other anesthetics. We therefore conducted 19F nuclear magnetic resonance measurements to determine whether binding of isoflurane to BSA was stereoselective. Isoflurane chemical shifts were measured as a function of BSA concentration to determine the chemical shift differences between the free and bound isoflurane. KD was determined by measuring the 19F transverse relaxation times (T2) as a function of isoflurane concentration. The binding duration was determined by assessing increases in 1/T2 as a result of isoflurane exchanging between the free and bound states. The S(+) and R(-) enantiomers exhibited no stereoselectivity in chemical shifts and KD values (KD = 1.3 +/- 0.2 mM, mean +/- SE, for S(+), R(-), and the racemic mixture). Nonetheless, stereoselectivity was observed in dynamic binding parameters; the S(+) enantiomer bound with slower association and dissociation rates than the R(-).  相似文献   

19.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of a murine hybridoma cell line at two feed glutamine concentrations, 4.0 and 1.7 mM. Carbon-13 labeling patterns were used in conjunction with nutrient uptake rates to calculate the metabolic fluxes through the glycolytic pathway, the pentose shunt, the malate shunt, lipid biosynthesis, and the tricarboxylic acid (TCA) cycle. Decreasing the feed glutamine concentration significantly decreased glutamine uptake but had little effect on glucose metabolism. A significant incrase in antibody productivity occurred upon decreasing the feed glutamine level. The increased antibody productivity in concert with decreased glutamine uptake and no apparent change in glucolytic metabolism suggests that antibody production was not energy limited. Metabolic flux calculations indicate that (1) approximately 92% of the glucose consumed proceeds directly through glycolysis with 8% channeled through the pentose shunt; (2) lipid biosynthesis appears to be greater than malate shunt activity; and (3) considerable exchange occurs between TCA cycle intermediates and amino acid metabolic pools, leading to substantial loss of (13)C label from the TCA cycle. These results illustrate that (13)NMR spectroscopy is a powerfulf tool in the calculation of metabolic fluxes, particularly for exchange pathways where no net flux occurs. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
The reaction of cytochrome c with ethyl thioltrifluoroacetate was carried out under conditions which led to the selective trifluoroacetylation of a small number of the 19 lysines. The mixture of derivatives was separated by ion-exchange chromatography and four different derivatives with well-resolved 19F nuclear magnetic resonance (NMR) spectra were obtained. Peptide mapping techniques indicated that one of these derivatives contained a single trifluoroacetyl group at lysine 22, and another derivative was singly labeled at lysine 25. The trifluoroacetylated lysine 22 derivative was fully active toward both succinate-cytochrome c reductase (EC 1.3.99.1) and cytochrome oxidase (EC 1.9.3.1) white the trifluoroacetylated lysine 25 derivative was fully active toward the reductase, but had a threefold greater Michaelis constant in the cytochrome oxidase reactin. This supports the hypothesis that the cytochrome oxidase binding site is located in the heme cervice region, and that Lys-25 is important in the binding. 19FNMR spectra of the cytochrome c derivatives bound to phospholipid vesicles were obtained. The reasonably narrow line widths (35-65 Hz) and good sensitivity of the trifluoroacetyl resonances indicated that they might be useful probes for the interaction of cytochrome c with intact mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号