首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase and its endogenous substrates in coated vesicles   总被引:3,自引:0,他引:3  
Coated vesicles prepared from bovine brains contained a protein kinase activity which catalyzed the phosphorylation of endogenous structural proteins, Mr 150 000, 120 000, 48 000 and 32 000. An endogenous protein, Mr 48 000 was most strongly phosphorylated by this kinase. This protein kinase also phosphorylated exogenous proteins, phosvitin intensely and casein slightly but not histone or protamine. The enzyme activity was independent of cyclic nucleotides or Ca2+/calmodulin. Mg2+ stimulated the kinase activity. Some divalent cations were substituted for Mg2+; the potency decreased in the order Mn2+, Mg2+, Co2+, Ca2+, Zn2+. Two separate subfractions, the outer coat and the inner vesicle (core), were prepared from coated vesicles by a urea treatment followed by sucrose density gradient centrifugation and dialysis. The kinase activity was found predominantly in the coat subfraction.  相似文献   

2.
Protein phosphorylation was examined in cytosolic extracts of adult rat anterior pituitary. In the presence of both cyclic AMP and calmodulin, the phosphorylation of a Mr 22,000 protein was markedly stimulated. Cyclic AMP and calmodulin must both be present in order for this effect to be observed; cyclic GMP does not substitute for cyclic AMP, and the effect is abolished by either trifluoperazine or the heat-stable inhibitor of cyclic AMP-dependent protein kinase. Two-dimensional isoelectric focusing sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that there are three molecular species of the Mr 22,000 phosphoprotein, with pI values ranging from 6.8 to 8.1. Phosphorylation of this protein is maximally stimulated by 5 microM cyclic AMP and 5.7 microM calmodulin. The effect of cyclic AMP plus calmodulin is enhanced by preincubation and requires a divalent cation; maximal phosphorylation takes place at 100 microM Mn2+, although higher concentrations of Mg2+ and Co2+ support an equivalent degree of phosphorylation. Cyclic AMP plus calmodulin-dependent protein phosphorylation was not detected in other rat tissues surveyed, including brain, testes, adrenal, kidney, liver, spleen, skeletal muscle, pineal, or posterior pituitary. These results help to explain the previous findings of Brattin and Portanova (Brattin, W.J., Jr., and Portanova, R. (1981) Mol. Cell. Endocr. 23, 77-90) of in vivo but not in vitro phosphorylation of three Mr 20,000 anterior pituitary proteins and indicate a possible point of convergence for calcium and cyclic AMP actions in the anterior pituitary.  相似文献   

3.
Proteins in human red cell hemolysate were purified to determine which of them increase inhibition of the Na,K-ATPase in the presence of 2 microM free Ca. Samples purified 600,000-fold inhibited the Na,K-ATPase of human red cells in a Ca-dependent manner and stimulated the (Ca+Mg)-ATPase. These samples contained two proteins as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE): calmodulin (18,000 Mr), which comprised most (greater than 90%) of the total protein, and an unidentified protein of approximately 13,000 Mr. Both proteins were a distinctive light yellow when stained with silver. Calmodulin from bovine testes also inhibited the Na,K-ATPase and stimulated the (Ca+Mg)-ATPase. This preparation also contained two proteins as analyzed by SDS-PAGE: calmodulin (95 to 99% of the total protein) and another protein of approximately 13,000 Mr (1 to 5% of the total protein). Both were light yellow when stained with silver. Since the amount of red cell protein was limited, the remainder of the study was carried out with the bovine testes preparation. Heating the testes preparation decreased, but did not abolish, inhibition of the Na,K-ATPase and reduced stimulation of the (Ca+Mg)-ATPase. When corrected for denatured calmodulin, both heated and unheated proteins increased inhibition of the Na,K-ATPase to the same extent. The Na,K-ATPase was inhibited at 2 microM free Ca in a dose-dependent manner over a range of 15 to 100 nM calmodulin. To establish if the inhibition was due to the calmodulin or the 13,000 Mr protein, both were electroeluted after SDS-PAGE. Electroeluted calmodulin stimulated the (Ca+Mg)-ATPase and increased Ca inhibition of the Na,K-ATPase. Electroeluted amounts of the smaller Mr protein slightly stimulated the (Ca+Mg)-ATPase, but had no effect on the Na,K-ATPase. This protein was digested with cyanogen bromide, partially sequenced, and thereby identified as a fragment of calmodulin. We conclude that intact calmodulin increases inhibition of the Na,K-ATPase at 2 microM free Ca. We suggest that calmodulin is part of a mechanism mediating the effects of physiological free Ca on the Na,K-ATPase.  相似文献   

4.
Calmodulin-stimulated protein kinase activity from rat pancreas   总被引:8,自引:1,他引:7       下载免费PDF全文
Previous work from our laboratory has demonstrated that neurohumoral stimulation of the exocrine pancreas is associated with the phosphorylation of the Mr 29,000 ribosomal protein S6. In a cell-free system using pancreatic postmicrosomal supernatant as the kinase donor, we found that the following co-factors stimulate the phosphorylation of the Mr 29,000 ribosomal protein: calcium with calmodulin, calcium with phosphatidyl serine, and cAMP. These findings suggest that the pancreas contains a calcium-calmodulin-dependent protein kinase (CaM-PK) that can phosphorylate the Mr 29,000 ribosomal protein. A CaM-PK activity was partially purified sequentially by ion exchange, gel filtration, and calmodulin-affinity chromatography. Phosphorylation of the Mr 29,000 ribosomal protein by the partially purified CaM-PK was dependent on the presence of both calcium and calmodulin and not on the other co- factors. The CaM-PK fraction contained a phosphoprotein of Mr 51,000 whose phosphorylation was also dependent on calcium and calmodulin. When 125I-calmodulin-binding proteins from the CaM-PK fraction were identified using electrophoretic transfers of SDS-polyacrylamide gels, a single Mr 51,000 protein was labeled. The preparation enriched in CaM- PK activity contained an Mr 51,000 protein that underwent phosphorylation in a calcium-calmodulin-dependent manner and an Mr 51,000 calmodulin-binding protein. It is therefore possible that the CaM-PK may comprise a calmodulin-binding phosphoprotein component of Mr 51,000.  相似文献   

5.
A high degree of ATP hydrolytic activity present in purified rat pancreatic acinar cells was localized to plasma membranes. This activity was stimulated almost equally by Mg2+ or Ca2+. Kinetic analysis revealed that the enzyme had a higher affinity for Ca2+ (Kd = 1.73 microM) than Mg2+ (Kd = 2.98 microM) but a similar maximal rate of activity. A comparison of substrate requirements revealed very similar profiles for the Mg2+- and Ca2+-stimulated activities. Combinations of saturating concentrations of Mg2+ or Ca2+ produced the same degree of maximal activity. Investigation of the partial reactions of the ATPase activity revealed two phosphoprotein intermediates (Mr = 115,000 and 130,000) in the presence of Ca2+ and Mg2+. A significant stimulation of the Ca2+-ATPase activity by calmodulin was observed (Kd = 0.7 microM). Calmodulin increased the Ca2+-sensitivity of this enzyme system; Mg2+ appeared to be required for this effect. The Ca2+-ATPase activity was also stimulated by acidic phospholipids. Using an 125I-labeled calmodulin gel overlay technique, calmodulin was shown to bind in a Ca2+-dependent fashion to 133,000- and 230,000-dalton proteins present in the plasma membrane-enriched fraction. Under conditions that favor Ca2+-dependent kinase activity, calmodulin enhanced the phosphorylation of a 30,000- and 19,000-dalton protein. The major ATP hydrolytic activity in pancreatic acinar plasma membranes was present as an ectoenzyme.  相似文献   

6.
The activity of a purified cytosolic aminopeptidase (Mr 79,000) from monkey brain was stimulated about 4-fold by ATP-Mg2+. The stimulation was seen with either synthetic aminopeptidase substrates or natural peptides such as enkephalins. Both ATP and Mg2+ were required for stimulation, and ADP did not inhibit the stimulation. Non-hydrolysable analogues of ATP, deoxy-ATP and other nucleoside triphosphates stimulated to a lesser extent compared with ATP, whereas nucleoside mono- or di-phosphates were ineffective. The enzyme did not exhibit any ATPase activity. An ATPase inhibitor, orthovanadate, had no inhibitory effect on the ATP-Mg2+ stimulation. The aminopeptidase was not autophosphorylated by [gamma-32P]ATP and Mg2+, but in the presence of cyclic AMP-dependent protein kinase underwent phosphorylation on serine residue(s). Phosphorylation resulted in inactivation of the aminopeptidase activity, and also resulted in a decreased stimulation of the enzyme by ATP-Mg2+.  相似文献   

7.
Calmodulin binding proteins have been found in submitochondrial fractions obtained from highly purified rat liver mitochondria. The matrix fraction contains two major calmodulin binding proteins: one, having Mr of 145,000, apparently is carbamoyl-phosphate synthetase. Another has a Mr of 58,000 and has not been associated with enzyme activities. A major calmodulin binding protein of unknown function and having Mr of 32,000 has been found in the Triton X-100 solubilizate of the inner membrane. Minor amounts of two calmodulin binding proteins having Mr of about 37,000 and 56,000 have been found in the outer membrane.  相似文献   

8.
The interaction of hepatocytes with the basement membrane glycoprotein laminin was studied using synthetic peptides derived from laminin sequences. Rat hepatocytes bind to laminin and three different sites within the A and B1 chains of laminin were identified. Active laminin peptides include the PA22-2 peptide (close to the carboxyl end of the long arm in the A chain), the RGD-containing peptide, PA21 (in the short arm of the A chain) and the pentapeptide YIGSR (in the short arm of the B1 chain). PA22-2 was the most potent peptide, whereas the other two peptides had somewhat lower activity. Furthermore, hepatocyte attachment to laminin was inhibited by the three peptides, with PA22-2 being the most active. Various proteins from isolated membranes of cell-surface iodinated hepatocytes bound to a laminin affinity column including three immunologically related binding proteins : Mr = 67,000, 45,000, and 32,000. Several proteins--Mr = 80,000, 55,000, and 38,000-36,000--with a lower affinity for laminin were also identified. Affinity chromatography on peptide columns revealed that the PA22-2 peptide specifically bound the Mr = 80,000, 67,000, 45,000, and 32,000 proteins, the PA21 peptide bound the Mr = 45,000 and 38,000-36,000 proteins and the YIGSR peptide column bound the 38,000-36,000 protein. Antisera to a bacterial fusion protein of the 32-kD laminin-binding protein (LBP-32) reacted strongly with the three laminin-binding proteins, Mr = 67,000, 45,000, and 32,000, showing that they are immunologically related. Immunoperoxidase microscopy studies confirmed that these proteins are present within the plasma membrane of the hepatocyte. The antisera inhibited the adhesion of hepatocytes to hepatocytes to laminin by 30%, supporting the finding that these receptors and others mediate the attachment of hepatocytes to several regions of laminin.  相似文献   

9.
Calcineurin purified from bovine brain was found to be active towards beta-naphthyl phosphate greater than p-nitrophenyl phosphate greater than alpha-naphthyl phosphate much greater than phosphotyrosine. In its native state, calcineurin shows little activity. It requires the synergistic action of Ca2+, calmodulin, and Mg2+ for maximum activation. Ca2+ and Ca2+ X calmodulin exert their activating effects by transforming the enzyme into a potentially active form which requires Mg2+ to express the full activity. Ni2+, Mn2+, and Co2+, but not Ca2+ or Zn2+, can substitute for Mg2+. The pH optimum, and the Vm and Km values of the phosphatase reaction are characteristics of the divalent cation cofactor. Ca2+ plus calmodulin increases the Vm in the presence of a given divalent cation, but has little effect on the Km for p-nitrophenyl phosphate. The activating effects of Mg2+ are different from those of the transition metal ions in terms of effects on Km, Vm, pH optimum of the phosphatase reaction and their affinity for calcineurin. Based on the Vm values determined in their respective optimum conditions, the order of effectiveness is: Mg2+ greater than or equal to Ni2+ greater than Mn2+ much greater than Co2+. The catalytic properties of calcineurin are markedly similar to those of p-nitrophenyl phosphatase activity associated with protein phosphatase 3C and with its catalytic subunit of Mr = 35,000, suggesting that there are common features in the catalytic sites of these two different classes of phosphatase.  相似文献   

10.
H LeVine  J L Su  N E Sahyoun 《Biochemistry》1988,27(17):6612-6617
A mouse monoclonal IgG1 antibody has been generated against the soluble form of the calmodulin-dependent protein kinase type II. This antibody recognizes both the soluble and cytoskeletal forms of the enzyme, requiring Ca2+ (EC50 = 20 microM) for the interaction. Other divalent cations such as Zn2+, Mn2+, Cd2+, Co2+, and Ni2+ will substitute for Ca2+, while Mg2+ and Ba2+ will not. The antibody reacts with both the alpha- and beta-subunits on Western blots in a similar Ca2+-dependent fashion but with a lower sensitivity. The affinity of the antibody for the kinase is 0.13 nM determined by displacement of 125I Bolton-Hunter-labeled kinase with unlabeled enzyme. A variety of other proteins including tubulin do not compete for antibody binding. The Mr 30,000 catalytic fragment obtained by proteolysis of either the soluble or the cytoskeletal form of the kinase fails to react with the antibody. Calmodulin and antibody reciprocally potentiate each other's interaction with the enzyme. This is illustrated both by direct binding studies and by a decrease of the Kmapp for calmodulin and an increase in the Vmax for the autophosphorylation reaction of the enzyme. The antibody thus appears to recognize and stabilize a conformation of the kinase which favors calmodulin binding although it does not itself activate the kinase in the absence of calmodulin. Since the Mr 30,000 catalytic fragment of the kinase is not immunoreactive, either the antibody combining site of the kinase must be present in the noncatalytic portion of the protein along with the calmodulin binding site or proteolysis interferes with the putative Ca2+-dependent conformational change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Rat liver cytosol casein kinases 1 and 2 were stimulated by free Mg2+, but the optimal concentration of cation varied with both the casein kinase and the protein substrate used. Mn2+, but neither Ca2+ nor Zn2+, could efficiently substitute for Mg2+ in forming the bivalent-cation-ATP complex used as substrate, but free Mn2+ was inhibitory. The magnitude of these effects depended on the type of casein kinase and the protein substrate used. These results support the idea that, besides the effects of Mg2+ as a component of the Mg-ATP complex, or through interaction with the protein substrate, free Mg2+ is an allosteric effector of both casein kinases.  相似文献   

12.
The nature of cytosolic factors which modulate the activity of rat liver phosphatidylethanolamine (PE) methyltransferase was investigated. The combined additions of cytosol, Mg X ATP, and NaF to incubations with rat liver microsomes produced a 1.6-fold activation of the methyltransferase at pH 9.2 and a 1.3-fold stimulation at pH 7.0. Nonhydrolyzable 5'-adenylylimidodiphosphate could not substitute for ATP, although GTP could. The activation was time dependent, stable to reisolation of the microsomes by ultracentrifugation, and partially preventable by other cytosolic components. Despite these indications that PE methyltransferase might be a substrate for cytosolic protein kinases, cAMP and Ca2+-calmodulin exerted little influence on the activation reaction. Furthermore, microsomal PE methyltransferase activity was unaffected by purified preparations of cAMP-dependent protein kinase, calmodulin-dependent protein kinase, and casein kinase II, nor was methyltransferase activity influenced by the purified catalytic subunits of protein phosphatases 1 and 2A. Cytosol also contained inhibitors of PE methyltransferase which could overcome the Mg X ATP X NaF-mediated activation of the enzyme, but were not affected by the thermostable phosphatase inhibitors 1 and 2. Part of this inhibitory activity (apparent molecular mass of 15 X 10(3) daltons) was insensitive to trypsin and chymotrypsin, stimulated by Mn2+, and partly inhibited by NaF. Therefore, regulation of methyltransferase by reversible phosphorylation, while still a tenable hypothesis, is apparently more complex than previously proposed.  相似文献   

13.
R C Gupta  E G Kranias 《Biochemistry》1989,28(14):5909-5916
A Ca2+-calmodulin-dependent protein kinase was purified to apparent homogeneity from the cytosolic fraction of canine myocardium, with phospholamban as substrate. Purification involved sequential chromatography on DEAE-cellulose, calmodulin-agarose, DEAE-Bio-Gel A, and phosphocellulose. This procedure resulted in a 987-fold purification with a 5.4% yield. The purified enzyme migrated as a single band on native polyacrylamide gels, and it exhibited an apparent molecular weight of 550,000 upon gel filtration. Gel electrophoresis under denaturing conditions revealed a single protein band with Mr 55,000. The purified kinase could be autophosphorylated in a Ca2+-calmodulin-dependent manner, and under optimal conditions, 6 mol of Pi was incorporated per mole of 55,000-dalton subunit. The activity of the enzyme was dependent on Ca2+, calmodulin, and ATP.Mg2+. Other ions which could partially substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations were Sr2+ greater than Mn2+ greater than Zn2+ greater than Fe2+. The substrate specificity of the purified Ca2+-calmodulin-dependent protein kinase for cardiac proteins was determined by using phospholamban, troponin I, sarcoplasmic reticulum membranes, myofibrils, highly enriched sarcolemma, and mitochondria. The protein kinase could only phosphorylate phospholamban and troponin I either in their purified forms or in sarcoplasmic reticulum membranes and myofibrils, respectively. Exogenous proteins which could also be phosphorylated by the purified protein kinase were skeletal muscle glycogen synthase greater than gizzard myosin light chain greater than brain myelin basic protein greater than casein. However, phospholamban appeared to be phosphorylated with a higher rate as well as affinity than glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Aminopeptidase activity was partially characterized from midguts of Anopheles stephensi Liston which had been dissected 30 h after blood feeding. In crude midgut homogenate supernatants the aminopeptidases showed optimum activity at pH 8.0 and preferentially hydrolyzed alanine- and leucine-terminal amino acid substrates. Methionine, proline, lysine, and arginine terminal substrates were hydrolysed, but not glutamic acid. Activity was stimulated by Mg2+, EDTA, and low Ca2+ concentrations, while Mn2+, Tris, 1,10 phenanthroline, and higher Ca2+ concentrations were inhibitory. Supernatants from midguts homogenized in 1% Triton X-100 showed a two-fold increase in activity. Differential centrifugation of midgut homogenates demonstrated 45% of the total activity in a putative microvillar pellet and 32% in a soluble fraction. More than 92% of the total activity was solubilized after homogenization in Triton X-100. Activity in homogenate supernatants was restricted to one major peak (Mr = 552,000) with a higher molecular weight shoulder. Three distinct peaks of aminopeptidase activity were observed following Triton X-100 treatment: a minor high molecular weight peak (Mr = 552,000), and two major peaks at Mr = 123,000 and Mr = 32,000 respectively. The activity of aminopeptidase increased after a blood meal, in parallel to the post-feeding changes in trypsin activity, indicating its important role in secondary digestion of blood meal proteins.  相似文献   

15.
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase purified greater than 13,000-fold to apparent homogeneity from calf liver exhibited a single protein band (Mr approximately 102,000) on polyacrylamide gel electrophoresis under denaturing conditions. Enzyme activity comigrated with the single protein peak on analytical polyacrylamide gel electrophoresis, sucrose density gradient centrifugation, and gel filtration. From the sedimentation coefficient of 6.9 S and Stokes radius of 67 A, an Mr of 201,000 and frictional ratio (f/fo) of 1.7 were calculated, suggesting that the native enzyme is a nonspherical dimer of similar, if not identical, peptides. The effectiveness of Mg2+, Mn2+, and Co2+ in supporting catalytic activity depended on the concentration of cGMP and cAMP present as substrate or effector. Over a wide range of substrate concentrations, optimal concentrations for Mg2+, Mn2+, and Co2+ were about 10, 1, and 0.2 mM, respectively. At concentrations higher than optimal, Mg2+ inhibited activity somewhat; inhibition by Co2+ (and in some instances by Mn2+) was virtually complete. At low substrate concentrations, activity with optimal Mn2+ was equal to or greater than that with Co2+ and always greater than that with Mg2+. With greater than or equal to 0.5 microM cGMP or 20 to 300 microM cAMP and for cAMP-stimulated cGMP or cGMP-stimulated cAMP hydrolysis, activity with Mg2+ greater than Mn2+ greater than Co2+. In the presence of Mg2+, the purified enzyme hydrolyzed cGMP and cAMP with kinetics suggestive of positive cooperativity. Apparent Km values were 15 and 33 microM, and maximal velocities were 200 and 170 mumol/min/mg of protein, respectively. Substitution of Mn2+ for Mg2+ increased apparent Km and reduced Vmax for cGMP with little effect on Km or Vmax for cAMP. Co2+ increased Km and reduced Vmax for both. cGMP stimulated cAMP hydrolysis approximately 32-fold in the presence of Mg2+, much less with Mn2+ or Co2+. In the presence of Mg2+, Mn2+ and Co2+ at concentrations that increased activity when present singly inhibited cGMP-stimulated cAMP hydrolysis. It appears that divalent cations as well as cyclic nucleotides affect cooperative interactions of this enzyme. Whereas Co2+ effects were observed in the presence of either cyclic nucleotide, Mn2+ effects were especially prominent when cGMP was present (either as substrate or effector).  相似文献   

16.
Calcium binding activity in the 100,000 X g supernatant of bovine liver has been isolated by a procedure involving DEAE cellulose and Sephadex G-100 chromatography. In addition to calmodulin, two new high affinity calcium binding proteins have been identified. On gel filtration chromatography these proteins migrate with apparent molecular weights of 83,700 and 51,400; whereas by sodium dodecyl sulfate polyacrylamide gel electrophoresis, the two proteins migrate identically with Mr 63,000. In the presence of millimolar Mg2+, both proteins bind up to one mol Ca2+/mol protein. Half-maximal binding occurs at approximately 0.1 microM Ca2+. Amino acid compositional analysis reveals that both proteins are acidic, and contain about 40% glx and asx. Peptide mapping procedures suggest that these proteins may be highly homologous or multiple forms of a single protein. The results show the existence of calcium binding protein(s) other than calmodulin in hepatic cytosol.  相似文献   

17.
Adenylate cyclase was assayed in a sonicated preparation of silkworm pupal fat body. The adenylate cyclase was found mostly in the particulate fraction. The activity depended upon either Mg2+ or Mn2+, and the degree of stimulation by Mn2+ was 2 times greater than that by Mg2+ compared at the saturating concentrations. In the presence of Mg2+, the enzyme was inhibited by both EGTA and high concentrations of Ca2+, showing biphasical response to Ca2+. The enzyme was stimulated several-fold by NaF. The enzyme exhibited typical Michaelis-Menten kinetics and Km values were 0.13 mM for MgATP and 0.086 mM for MnATP.  相似文献   

18.
S Kubota  T Onaka  H Murofushi  N Ohsawa  F Takaku 《Biochemistry》1986,25(26):8396-8402
Porcine and bovine brain high Ca2+-requiring neutral proteases were purified to homogeneity by the same isolation procedures, and their properties were compared. A high degree of similarity existed between the two proteases. The purification procedures included ion-exchange chromatography on DEAE-cellulose, hydrophobic chromatography on phenyl-Sepharose CL-4B, second DEAE-cellulose chromatography, second phenyl-Sepharose CL-4B chromatography, and gel filtration on Ultrogel AcA 34. Both purified enzymes were composed of Mr 75,000 and 29,000 subunits, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both enzymes required 250 microM Ca2+ for half-maximal activity and 700 microM Ca2+ for maximal activity. Sr2+ and Ba2+, but not Mg2+ or Mn2+, also activated both enzymes but not as effectively as Ca2+. Both enzymes displayed maximum activity at pH 7.5-8.0. Leupeptin, antipain, and trans-epoxysuccinyl-L-leucylagmatine inhibited both enzymes. Neurofilament triplet proteins and microtubule-associated proteins were extensively hydrolyzed by both proteases, but tubulin and actin were not hydrolyzed. The amino acid compositions of the two proteases were very similar. Antisera against bovine brain protease cross-reacted with porcine brain protease when examined by immunoelectrotransfer blot techniques.  相似文献   

19.
Plasma membranes were isolated from light-grown, 14-day-old maize leaves ( Zea mays L . cv. Golden Cross Bantam) using aqueous two-phase partitioning. The plasma membrane (PM) fraction contained < 0.3% of the total chlorophyll, < 0.2% of the mitochondrial marker enzyme activity, minimal contamination by endomembranes and 34% of the total PM.
A calmodulin-stimulated (Ca2++ Mg2+)-ATPase was identified in the PM-enriched fraction. The Ca2++ calmodulin stimulation was dependent on Mg2+, saturated at ca 25 μM total Ca2+, had a pH maximum at 7.2 and was maximally stimulated by 600 n M bovine brain calmodulin. The stimulation was not greatly affected by the anion present and showed a divalent cation specificity of Ca2+ > Sr+2 ± Mn+2 > Co2+± Cu2+ > Ba2+. The napthalenesulfonamide W7, an antagonist of calmodulin action, completely inhibited the calmodulin stimulation at 175 μM , while the less active analogue W5 was ineffective at this concentration. La3+, an inhibitor of PM Ca2+ transport, showed a 50% inhibition of calmodulin-stimulated ATPase activity at ca 200 μM . Taken as a whole, these data demonstrate the presence of a calmodulinstimulated, (Ca2++ Mg2+)-ATPase on the cytoplasmic surface of the plasma membrane of maize leaf cells.  相似文献   

20.
To investigate the effect of Mn2+ on pancreatic protein phosphorylation, we incubated rat pancreatic cytosol in Tris buffer (pH 7.5) with [gamma-32P]ATP. Analysis using sodium dodecyl sulphate polyacrylamide gel electrophoresis and autoradiography revealed a single protein (p98), with an Mr of 98,000 and a pI of 6.4-6.5, which was phosphorylated in a dose-dependent manner by Mn2+. A threshold effect was observed at 35 microM, and maximal effect at 1.1 mM Mn2+. Ca2+ and calmodulin (CaM) did not cause p98 phosphorylation, but Mg2+ (10 mM) caused faint non-specific phosphorylation of p98. Ca2+ (0.03-3 mM) and CaM (1-10 micrograms/ml) significantly enhanced, whereas trifluoperazine (TFP) and Mg2+ inhibited Mn(2+)-stimulated p98 phosphorylation. Under the above incubation conditions, Mn(2+)-stimulated protein phosphorylation of p98 was also observed in isolated pancreatic acini, but not in cytosols from liver or kidney. Partial purification of p98 and amino acid sequencing of the protein band corresponding to p98 indicated complete sequence homology with rat elongation factor 2 (EF-2). Furthermore, the combination of Ca2+, Mg2+ and CaM, which is known to induce the phosphorylation of EF-2, mimicked the actions of Mn2+. Inasmuch as EF-2 is the major substrate for CaM-dependent protein kinase III (CaM-PK III), these studies suggest that in the pancreatic acinar cell Mn2+/CaM protein kinase activity is mediated via CaM-PK III and the Mn2+ participates in the regulation of this enzyme in the pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号