首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We isolated subfractions of human plasma low density lipoprotein (LDL) using ion-exchange chromatography. Plasma LDL from normolipidemic subjects were applied to a DEAE Sepharose 6B column. After elution of the bulk of LDL at 150 mM NaCl (the major fraction), the residual LDL was eluted at 500 mM NaCl and designated as the minor fraction. The minor fraction, only less than 1% of total LDL, tended to be somewhat similar in certain properties to oxidized LDL, e.g., an increased negative charge, higher protein/cholesterol ratio, and a higher flotation density than native LDL. These results were consistent with data reported by Avogaro et al. (1988. Arteriosclerosis. 8: 79-87). However, assays of 125I-labeled LDL binding activity for LDL receptors equal to that of the major fraction. Incorporation of [14C]oleate into cholesteryl ester [acyl-CoA:cholesterol acyltransferase (ACAT) activity] in mouse peritoneal macrophages incubated with the minor fraction was only slightly greater than that with the major fraction. Incubation of the minor fraction with 0.5 microM Cu2+ caused a remarkable stimulation of ACAT activity, while stimulation by the major fraction required incubation with 5 microM Cu2+, suggesting that the minor fraction was relatively labile to oxidation. The minor but definite presence of a plasma LDL subfraction more negative and susceptible to oxidation implicates the possibility of its association with atherogenesis.  相似文献   

2.
We describe a methodology developed to separate different forms of charge-modified low density lipoproteins (LDL) using the fast protein liquid chromatography (FPLC) system from Pharmacia. Lipoproteins were isolated by sequential ultracentrifugation and introduced onto an anion-exchange column (Mono Q HR 5/5). The multistep NaCl gradient elution was optimized and the analytical variables were determined on copper-oxidized LDL. After oxidation by copper for various times (up to 48 h), five forms were obtained (fractions A, B, C, D, and E). Within-run and day-to-day reproducibility were better than 8.6% and 10%, respectively. Protein and cholesterol recovery after the chromatographic separation was good (greater than 82%) and the detection limit was about 1 microgram. The more negative forms of collected LDL were mainly characterized by an increase in the lipid peroxidation product content, a depletion of vitamin E, an alteration of apoB and increased degradation by macrophages. The proposed methodology was applied to the study of LDL modifications generated by human umbilical endothelial cells and the protective effect of antioxidants (vitamin E and probucol).  相似文献   

3.
4.
Low density lipoprotein (LDL) was fractionated into subspecies by the use of DEAE-agarose column chromatography and the peptide compositions of the LDL subspecies which eluted at different NaCl concentrations were determined. LDL which elutes at low NaCl concentration has relatively less non-B apoprotein than does LDL which elutes at high salt concentration. The LDL subspecies which elute at high NaCl concentration contain more apo A-1 than do those which elute at the lower NaCl molarity. These results indicate that LDL consists of subfractions which differ in their peptide compositions.  相似文献   

5.
Human salivary proteins were enzymically iodinated by the 125I-lactoperoxidase system. The proteins were than subjected to DEAE-cellulose column chromatography, preparative column electrofocusing and thin-layer polyacrylamide-gel electrofocusing. The radioactivity in the resolved protein pools and bands was determined. Results show that salivary proteins differ in their susceptibility to iodination carried out by this enzymic method. Two major iodine-binding protein fractions were discovered: one behaved like serum albumin on electrofocusing and was most susceptible to iodination by lactoperoxidase, and other had pI characteristics similar to those of salivary amylase. The physiological significance of the iodination of salivary proteins, which can also take place in vivo, is discussed.  相似文献   

6.
Using [3H]-labeled oligosaccharides, we found that the presence of at least two alpha-mannosyl residues with free hydroxyl groups at C-3, 4, and 6 is required for oligosaccharides to be related by a concanavalin A-Sepharose column. This finding is also applicable to N-[14C]acetylated glycopeptides. Thus, the concanavalin A-Sepharose column might become a useful tool for structural studies of glycopeptides and oligosaccharides and for their fractionation. Glycopeptides prepared from the trypsinate of rat fibroblasts, which has been purified by paper electrophoresis, were further separated into two fractions by chromatography on a concanavalin A-Sepharose column.  相似文献   

7.
Further studies have been made of the effects of high density lipoprotein (HDL) on the surface binding, internalization and degradation of 125I-labeled low density lipoprotein (125I-labeled LDL) by cultured normal human fibroblasts. In agreement with earlier studies, during short incubations HDL inhibited the surface binding of 125I-labeled LDL. In contrast, following prolonged incubations 125I-labeled LDL binding was consistently greater in the presence of HDL. The increment in 125I-labeled LDL binding induced by HDL was: (a) associated with a decrease in cell cholesterol content; (b) inhibited by the addition of cholesterol or cycloheximide to the incubation medium; and (c) accompanied by similar increments in 125I-labeled LDL internalization and degradation. It is concluded that HDL induces the synthesis of high affinity LDL receptors in human fibroblasts by promoting the efflux of cholesterol from the cells.  相似文献   

8.
Dietary phenolic compounds, ubiquitous in vegetables and fruits and their juices possess antioxidant activity that may have beneficial effects on human health. The phenolic composition of six commercial apple juices, and of the peel (RP), flesh (RF) and whole fresh Red Delicious apples (RW), was determined by high performance liquid chromatography (HPLC), and total phenols were determined by the Folin-Ciocalteau method. HPLC analysis identified and quantified several classes of phenolic compounds: cinnamates, anthocyanins, flavan-3-ols and flavonols. Phloridzin and hydroxy methyl furfural were also identified. The profile of phenolic compounds varied among the juices. The range of concentrations as a percentage of total phenolic concentration was: hydroxy methyl furfural, 4-30%; phloridzin, 22-36%; cinnamates, 25-36%; anthocyanins, n.d.; flavan-3-ols, 8-27%; flavonols, 2-10%. The phenolic profile of the Red Delicious apple extracts differed from those of the juices. The range of concentrations of phenolic classes in fresh apple extracts was: hydroxy methyl furfural, n.d.; phloridzin, 11-17%; cinnamates, 3-27%; anthocyanins, n.d.-42%; flavan-3-ols, 31-54%; flavonols, 1-10%. The ability of compounds in apple juices and extracts from fresh apple to protect LDL was assessed using an in vitro copper catalyzed human LDL oxidation system. The extent of LDL oxidation was determined as hexanal production using static headspace gas chromatography. The apple juices and extracts, tested at 5 microM gallic acid equivalents (GAE), all inhibited LDL oxidation. The inhibition by the juices ranged from 9 to 34%, and inhibition by RF, RW and RP was 21, 34 and 38%, respectively. Regression analyses revealed no significant correlation between antioxidant activity and either total phenolic concentration or any specific class of phenolics. Although the specific components in the apple juices and extracts that contributed to antioxidant activity have yet to be identified, this study found that both fresh apple and commercial apple juices inhibited copper-catalyzed LDL oxidation. The in vitro antioxidant activity of apples support the inclusion of this fruit and its juice in a healthy human diet.  相似文献   

9.
The rate of degradation of oxidatively modified low density lipoprotein (Ox-LDL) by human endothelial cells was similar to that of unmodified low density lipoprotein (LDL), and was approximately 2-fold greater than the rate of degradation of acetylated LDL (Ac-LDL). While LDL and Ac-LDL both stimulated cholesterol esterification in endothelial cells, Ox-LDL inhibited cholesterol esterification by 34%, demonstrating a dissociation between the degradation of Ox-LDL and its ability to stimulate cholesterol esterification. Further, while LDL and Ac-LDL resulted in a 5- and 15-fold increase in cholesteryl ester accumulation, respectively, Ox-LDL caused only a 1.3-fold increase in cholesteryl ester mass. These differences could be accounted for, in part, by the reduced cholesteryl ester content of Ox-LDL. However, when endothelial cells were incubated with Ac-LDL in the presence and absence of Ox-LDL, Ox-LDL led to a dose-dependent inhibition of cholesterol esterification without affecting the degradation of Ac-LDL. This inhibitory effect of Ox-LDL on cholesteryl ester synthesis was also manifest in normal human skin fibroblasts incubated with LDL and in LDL-receptor-negative fibroblasts incubated with unesterified cholesterol to stimulate cholesterol esterification. Further, the lipid extract from Ox-LDL inhibited cholesterol esterification in LDL-receptor negative fibroblasts. These findings suggest that the inhibition of cholesterol esterification by oxidized LDL is independent of the LDL and scavenger receptors and may be a result of translocation of a lipid component of oxidatively modified LDL across the cell membrane.  相似文献   

10.
Proteolytic treatment of human serum low density lipoprotein (LDL) resulted in the observation of interesting time-dependent changes in the sodium dodecyl sulfate-polyacrylamide gel electrophoretic pattern of apo-LDL. Five major fragments with well-defined relative mobilities appeared within 30 min of protease treatment. Prolonged treatment with subtilisin caused changes in the amount of peptides in each of the five bands but their positions on the gel remained unchanged. Periodic acid-Schiff base staining of the gel showed a proteolytic fragment with an apparent molecular weight of 110.000 (actually a cross-linked dimer of two peptides with molecular weights of 77,000 and 68,000) to be a carbohydrate-bearing peptide that was most resistant to further proteolysis and therefore responsible for the interaction between the digested LDL and concanavalin A.  相似文献   

11.
The lipid substrate specificity of Manduca sexta lipid transfer particle (LTP) was examined in in vitro lipid transfer assays employing high density lipophorin and human low density lipoprotein (LDL) as donor/acceptor substrates. Unesterified cholesterol was found to exchange spontaneously between these substrate lipoproteins, and the extent of transfer/exchange was not affected by LTP. By contrast, transfer of labeled phosphatidylcholine and cholesteryl ester was dependent on LTP in a concentration-dependent manner. Facilitated phosphatidylcholine transfer occurred at a faster rate than facilitated cholesteryl ester transfer; this observation suggests that either LTP may have an inherent preference for polar lipids or the accessibility of specific lipids in the donor substrate particle influences their rate of transfer. The capacity of LDL to accept exogenous lipid from lipophorin was investigated by increasing the high density lipophorin:LDL ratio in transfer assays. At a 3:1 (protein) ratio in the presence of LTP, LDL became turbid (and aggregated LDL were observed by electron microscopy) indicating LDL has a finite capacity to accept exogenous lipid while maintaining an overall stable structure. When either isolated human non B very low density lipoprotein (VLDL) apoproteins or insect apolipophorin III (apoLp-III) were included in transfer experiments, the sample did not become turbid although lipid transfer proceeded to the same extent as in the absence of added apolipoprotein. The reduction in sample turbidity caused by exogenous apolipoprotein occurred in a concentration-dependent manner, suggesting that these proteins associate with the surface of LDL and stabilize the increment of lipid/water interface created by LTP-mediated net lipid transfer. The association of apolipoprotein with the surface of modified LDL was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, and scanning densitometry revealed that apoLp-III bound to the surface of LDL in a 1:14 apoB:apoLp-III molar ratio. Electron microscopy showed that apoLp-III-stabilized modified LDL particles have a larger diameter (29.2 +/- 2.6 nm) than that of control LDL (22.7 +/- 1.9 nm), consistent with the observed changes in particle density, lipid, and apolipoprotein content. Thus LTP-catalyzed vectorial lipid transfer can be used to introduce significant modifications into isolated LDL particles and provides a novel mechanism whereby VLDL-LDL interrelationships can be studied.  相似文献   

12.
The capacity of the homogenates from human liver, rat parenchymal cells, rat non-parenchymal cells and total rat liver for the breakdown of human and rat high density lipoprotein (HDL) and human low density lipoprotein (LDL) was determined. Human HDL was catabolized by human liver, in contrast to human LDL, the protein degradation of which was low or absent. Human and rat HDL were catabolized by both the rat parenchymal and non-parenchymal cell homogenates with, on protein base, a 10-times higher activity in the non-parenchymal liver cells. This implies that more than 50% of the total liver capacity for HDL protein degradation is localized in these cell types. Human LDL degradation in the rat could only be detected in the non-parenchymal cell homogenates. These findings are discussed in view of the function of HDL and LDL as carriers for cholesterol.  相似文献   

13.
14.
A 24 h pretreatment of MRC5 fibroblasts with the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA) induced a marked decrease in low density lipoprotein (LDL) internalization and degradation; the maximal effect (about 55% decrease) was observed for 10(-7) M TPA. LDL binding was reduced about 35-40%. A significant decrease (about 25%) in LDL internalization was observed after a 2 h incubation of cells with the drug, but longer incubation times (4-6 h) led to a greater effect. Another tumor promoter, phorbol 12,13-dibutyrate decreased LDL internalization by about 35%, whereas the non-tumor promoting 4 alpha-phorbol 12,13-didecanoate had no effect. The protein kinase C inhibitor alpha-cobrotoxin partially antagonized the inhibitory effect of TPA on LDL internalization. The non-phorbol tumor promoter mezerein, another protein kinase C activator, decreased LDL uptake by about 50%. Finally, it was found that TPA had no significant effect on the affinity of the receptor for the LDL. These results suggest a role for protein kinase C in the LDL pathway in cultured human fibroblasts.  相似文献   

15.
The binding and degradation of equimolar concentrations of lipoprotein(a) (Lp(a)) and low density lipoprotein (LDL) isolated from the same individual were studied in primary cultures of human monocyte-derived macrophages (HMDM). At 4 degrees C, LDL receptor-mediated binding of both Lp(a) and LDL was of low affinity, being 0.8 and 0.23 microM, respectively. Competitive binding studies indicated that the binding of Lp(a) to HMDM was competed 63% by excess LDL. In contrast to the 4 degrees C binding data, the degradation of Lp(a) at 37 degrees C was mainly nonspecific because the amount of Lp(a) processed by the LDL receptor pathway in 5 h was 17% that of LDL. According to pulse-chase experiments, this phenomenon may be accounted for by the facts that less Lp(a) is bound to HMDM at 37 degrees C and that Lp(a) has a lower intrinsic degradation rate and was not due to increased intracellular accumulation or retroendocytosis of the lipoprotein. Degradation of both lipoproteins was primarily lysosomal and only modestly affected by up- or down-regulation of the LDL receptor. The rate of retroendocytosis in HMDM was approximately equal to the degradation rate and appeared to be independent of the type of lipoprotein used, up- or down-regulation of the LDL receptor, or the presence of the lysosomotropic agent chloroquine. Overall, the results indicate that HMDM degrade Lp(a) mainly via a nonspecific pathway with only 25% of total Lp(a) degradation occurring through the LDL receptor pathway. As both 37 degrees C degradation and 4 degrees C binding of LDL are mainly LDL receptor specific, the different metabolic behavior observed at 37 degrees C suggests that Lp(a) undergoes temperature-induced conformational changes on cooling to 4 degrees C that allows better recognition of Lp(a) by the LDL receptor at a temperature lower than the physiological temperature of 37 degrees C. How apo(a) affects these structural changes remains to be established.  相似文献   

16.
17.
We have shown previously that low density lipoprotein (LDL) subjected to vortexing forms self-aggregates that are avidly phagocytosed by macrophages. That phagocytic uptake is mediated by the LDL receptor. We now show that LDL self-aggregation is strongly inhibited (80-95%) by the presence of high density lipoprotein (HDL) or apolipoprotein (apo) A-I. Another type of LDL aggregation, namely that induced by incubation of LDL with phospholipase C, was also markedly inhibited by HDL or apoA-I. The aggregation of LDL induced by vortexing was not inhibited by 2.5 M NaCl, and apoA-I was still able to block LDL aggregation at this high salt concentration, strongly suggesting hydrophobic interactions as the basis for the effect of apoA-I. The fact that apoA-I protected against LDL aggregation induced by two apparently quite different procedures suggests that the aggregation in these two cases has common features. We propose that these forms of LDL aggregation result from the exposure of hydrophobic domains normally masked in LDL and that the LDL-LDL association occurs when these domains interact. ApoA-I, because of its amphipathic character, is able to interact with the exposed hydrophobic domains of LDL and thus block the intermolecular interactions that cause aggregation.  相似文献   

18.
We have determined the elution profile on Sepharose 4B chromatographic column ofthe tRNA isoaccepting species of all 20 amino acids from Escherichia coli MRE 600. Further chromatography on a reversed phase column (RPC-5) is sufficient, in some cases, for a complete purification.  相似文献   

19.
Macrophages and arterial chondroitin sulfate proteoglycans (CSPG) are probably associated with extracellular and intracellular lipoprotein deposition during atherogenesis. We found that human arterial CSPG can be used to select subclasses from low density lipoprotein (LDL) with different structural properties and capacities to interact with human monocyte-derived macrophages (HMDM). Four subclasses, LDL(PG)1 to LDL(PG)4, in order of decreasing CSPG-complexing capacity, were prepared and characterized in terms of their ability to interact with HMDM. The LDL subclasses with highest avidity for CSPG, LDL(PG)1 and LDL(PG)2, were bound, internalized, and degraded more efficiently than those of lower avidity for CSPG. From LDL(PG)1 to LDL(PG)4, the gradual decrease in uptake by HMDM and decreasing avidity for CSPG were associated with a gradual decrease in isoelectric point (from 5.93 to 5.68) and an augmented ratio of surface polar lipid to core nonpolar components (from 0.35 to 0.54). Competition experiments indicated that the proteoglycan-selected subfractions shared the binding sites and uptake mechanisms of native LDL. The results suggest the existence of a structurally related gradation in the avidity of LDL subpopulations for cells and matrix components. The presence within LDL subpopulations of a differential capacity to interact with intimal extracellular and cellular elements could be associated with a similar heterogeneity in their atherogenic potential.  相似文献   

20.
The plasma clearance and tissue distribution of radioiodinated low-density lipoprotein (LDL), beta-very low density lipoprotein (beta-VLDL), and acetoacetylated LDL were studied in cholesterol-fed rabbits. Radioiodinated LDL ([125I]LDL) was cleared more slowly than either [125I]beta-VLDL or acetoacetylated-[125I]LDL and its fractional catabolic rate was one-half that of [125I]beta-VLDL and one-ninth that of acetoacetylated-[125I]LDL. Forty-eight hours after the injection of the labeled lipoproteins, the hepatic uptake was the greatest among the organs evaluated with the uptake of [125I]LDL being one-third that of either [125I]beta-VLDL or acetoacetylated-[125I]LDL. The reduction in the hepatic uptake of LDL due to a down-regulation of the receptors would account for this retarded plasma clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号