首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analog probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogs that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe120 in the first extracellular loop. This was in contrast to its covalent attachment to Glu345 in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors.  相似文献   

3.
The efficiency of covalent labeling of a receptor by a photolabile analogue of its natural ligand is dependent on the spatial approximation of the probe and its target. Systematic application of intrinsic photoaffinity labeling to the secretin receptor, a prototypic Family B G protein-coupled receptor, demonstrated reduced efficiency of labeling for amino-terminal and mid-region sites of labeling relative to carboxyl-terminal sites. Reduction of pH from 7.4 to 5.5 and reduction of temperature from 25 °C to 4 °C improved the efficiency of covalent labeling of the receptor with these probes. This correlated with sites of labeling at the interface between the receptor amino terminus and the receptor core, a region containing histidine residues that have their ionization affected in this pH range. Application to the calcitonin receptor, another Family B G protein-coupled receptor, yielded analogous results. These results support the consistent mode of docking peptide ligands to this group of receptors.  相似文献   

4.
PAC1是神经肽垂体腺苷酸环化酶激活多肽(Pituitary adenylate cyclase activating polypeptide,PACAP)的特异受体,属于B族G蛋白偶联受体,介导PACAP的神经递质、神经调质、神经保护、抗神经损伤及调控神经再生等功能,PAC1高表达和神经损伤、肿瘤等生理病理过程密切相关。为了深入了解PAC1的功能,构建PAC1可调控表达的细胞系,通过优化的四环素控制表达系统实现PAC1在中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞的强力霉素(doxycycline,Dox)依赖的可控表达。首先通过双酶切将编码PAC1和增强型黄色荧光蛋白(EYFP,enhanced yellow fluorescent protein)的融和基因PAC1-EYFP克隆到pTRE-Tight载体上,获得重组载体pTRE-PAC1-EYFP;基因测序鉴定正确后将新型的四环素调节元件载体pTet-on advanced和反应元件载体pTRE-PAC1-EYFP分别转入CHO细胞中,G418和潮霉素(Hygromycin)双抗筛选阳性克隆PAC1-Tet-CHO,使用梯度浓度四环素类似物强力霉素Dox诱导PAC1-EYFP表达,48 h后检测受体表达水平,并通过MTT法检测不同PAC1表达水平的细胞增殖活性。荧光检测和Western印迹结果显示,成功获得了具有良好诱导性的Dox依赖的PAC1可控表达的细胞系,这些细胞株在传10代后仍能稳定地可控表达PAC1。MTT结果显示PAC1表达水平越高,细胞增殖活性越强。成功所构建的Dox依赖的PAC1可控表达细胞系,为PAC1的生物学功能的深入研究奠定了基础。  相似文献   

5.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with cytoprotective ability mediated by its specific receptor PAC1. In this research, firstly the thymus index and the expression of PAC1 in the normal and degenerative thymus with different gender were assayed; secondly PACAP in different dose was used to treat the female mice with cyclophosphamide (CPS) and the changes in thymus index, the expression of PAC1, histopathology, apoptosis, oxidative status and the caspase 3 activity in thymus were determined and compared. It was found that in the mice of age from 1 to 9 weeks in the stage of sex development, the thymus index was significantly higher in female mice than in male mice. And it was found for the first time that the PAC1 expression level in thymus of female mice was significantly higher than that of male mice and the expression of the PAC1 and PACAP increased significantly in the degenerative thymus induced by CPS. After PACAP was co-injected with CPS to the female mice, it was shown that only low dose (1 nmol/kg) of PACAP promoted the thymus index, inhibited the cell apoptosis, ameliorated the oxidative status and decreased the caspase activity significantly, while high dose (10 nmol/kg) of PACAP had no significant protective effects against CPS-induced thymus atrophy. It was concluded that the expression of PAC1 in the thymus changes in reverse ratio with thymus index and in direct ratio with cell apoptosis and only low dose of PACAP had positive effects against the CPS-induced thymus atrophy.  相似文献   

6.
Dimerization between G protein-coupled receptors (GPCRs) is a clearly established phenomenon. However, limited information is currently available on the interface essential for this process. Based on structural comparisons and sequence homology between rhodopsin and A1 adenosine receptor (A1R), we initially hypothesized that four residues in transmembrane (TM) 4 and TM5 are involved in A1R homodimerization. Accordingly, these residues were substituted with Ala by site-directed mutagenesis. Interestingly, the mutant protein displayed no significant decrease in homodimer formation compared with wild-type A1R, as evident from coimmunoprecipitation and BRET2 analyses (improved bioluminescence resonance energy transfer system offered by Perkin-Elmer Life Sciences), but lost ligand binding activity almost completely. Further studies disclosed that this effect was derived from the mutation of one particular residue, Trp132, which is highly conserved among many GPCRs. Confocal immunofluorescence and cell-surface biotinylation studies revealed that the mutant receptors localized normally at transfected cell membranes, signifying that loss of ligand binding was not because of defective cellular trafficking. Molecular modeling of the A1R-ligand complex disclosed that Trp132 interacted with several residues located in TM3 and TM5 that stabilized agonist binding. Thus, loss of interactions of Trp with these residues may, in turn, disrupt binding to agonists. Our study provides strong evidence of the essential role of the highly conserved Trp132 in TM4 of adenosine receptors.  相似文献   

7.
Sigma 1 Receptor is a subtype of opioid receptor that participates in membrane remodeling and cellular differentiation in thenervous system. Sigma1 Receptor protein with amino acid length ranging from 229 is widely distributed in the liver andmoderately in the intestine, kidney, white pulp of the spleen, adrenal gland, brain, placenta and the lung. In this study, the threedimensional structure for sigma 1 receptor protein has been developed by in- silico analysis based on evolutionary trace analysis of37 sigma proteins from different sources. The present work focus on identification of functionally important residues and itsinteraction with antipsychotic drugs reported in literature.  相似文献   

8.
The cholecystokinin (CCK1) receptor is a G protein-coupled receptor important for nutrient homeostasis. The molecular basis of CCK-receptor binding has been debated, with one prominent model suggesting occupation of the same region of the intramembranous helical bundle as benzodiazepines. Here, we used a specific assay of allosteric ligand interaction to probe the mode of binding of devazepide, a prototypic benzodiazepine ligand. Devazepide elicited marked slowing of dissociation of pre-bound CCK, only possible through binding to a topographically distinct allosteric site. This effect was disrupted by chemical modification of a cysteine in the benzodiazepine-binding pocket. Application of an allosteric model to the equilibrium interaction between a series of benzodiazepine ligands and CCK yielded quantitative estimates of each modulator’s affinity for the allosteric site, as well as the degree of negative cooperativity for the interaction between occupied orthosteric and allosteric sites. The allosteric nature of benzodiazepine binding to the CCK1 receptor provides new opportunities for small molecule drug development.  相似文献   

9.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

10.
The mutation of Asp198 to Asn in the receptor for glucagon-like peptide-1(7–36)amide (GLP-1) had no effect upon GLP-1 affinity whereas substitution with Ala greatly reduced affinity, demonstrating the importance of polarity rather than negative charge at Asp198. However, the Asp198-Ala mutation had less effect upon the affinity of Exendin-4, a peptide agonist that has been shown previously not to require its N-terminus for high affinity. Moreover, the affinity of a truncated GLP-1 analogue lacking the first eight residues was not affected by the Asp198-Ala mutation, demonstrating that Asp198 is required for maintaining the binding site of the N-terminal region of GLP-1.  相似文献   

11.
12.
Al-Sabah S  Donnelly D 《FEBS letters》2003,553(3):342-346
Lysine-288 in the glucagon-like peptide-1 receptor was predicted to be ideally positioned to play a role in hormone binding. Subsequent mutation of Lys-288 to Ala or Leu greatly reduced hormone affinity, while substitution with Arg had minimal effect. Compared to wild type, the Lys288-Ala receptor had a reduced affinity for three peptide ligands with complete N-terminal sequences but not for their N-truncated analogues. Hence, the role of this positively charged residue, which is conserved at the equivalent position in all other Family B receptors, was determined to be important for receptor interaction with the N-terminal eight residues of peptide agonists.  相似文献   

13.
14.
Growth cone response to the bifunctional guidance cue netrin-1 is regulated by the activity of intracellular signaling intermediates such as protein kinase C-alpha (PKCα) and adenylyl cyclase. Among the diverse cellular events these enzymes regulate is receptor trafficking. Netrin-1, itself, may govern the activity of these signaling intermediates, thereby regulating axonal responses to itself. Alternatively, other ligands, such as activators of G protein-coupled receptors, may regulate responses to netrin-1 by governing these signaling intermediates. Here, we investigate the mechanisms controlling activation of PKCα and the subsequent downstream regulation of cell surface UNC5A receptors. We report that activation of adenosine receptors by adenosine analogs, or activation of the putative netrin-1 receptor, the G protein-coupled receptor adenosine A2b receptor (A2bR) results in PKCα-dependent removal of UNC5A from the cell surface. This decrease in cell surface UNC5A reduces the number of growth cones that collapse in response to netrin-1 and converts repulsion to attraction. We show these A2bR-mediated alterations in axonal response are not because of netrin-1 because netrin-1 neither binds A2bR, as assayed by protein overlay, nor stimulates PKCα-dependent UNC5A surface loss. Our results demonstrate that netrin-1-independent A2bR signaling governs the responsiveness of a neuron to netrin-1 by regulating the levels of cell surface UNC5A receptor.  相似文献   

15.
16.
A Chinese hamster ovary cell line has been established which secretes the N-terminal domain of human mGlu1 receptor. The secreted protein has been modified to contain a C-terminal hexa-histidine tag and can be purified by metal-chelate chromatography to yield a protein with an apparent molecular weight of 130 kDa. Following treatment with dithiothreitol the apparent molecular weight is reduced to 75 kDa showing that the protein is a disulphide-bonded dimer. N-terminal protein sequencing of both the reduced and unreduced forms of the protein yielded identical sequences, confirming that they were derived from the same protein, and identifying the site of signal-peptide cleavage of the receptor as residue 32 in the predicted amino acid sequence. Endoglycosidase treatment of the secreted and intracellular forms of the protein showed that the latter was present as an endoglycosidase H-sensitive dimer, indicating that dimerization is taking place in the endoplasmic reticulum. Characterization of the binding of [3H]quisqualic acid showed that the protein was secreted at levels of up to 2.4 pmol/mL and the secreted protein has a Kd of 5.6 +/- 1.8 nm compared with 10 +/- 1 nm for baby hamster kidney (BHK)-mGlu1alpha receptor-expressing cell membranes. The secreted protein maintained a pharmacological profile similar to that of the native receptor and the binding of glutamate and quisqualate were unaffected by changes in Ca2+ concentration.  相似文献   

17.
PACAP-27 and PACAP-38 are the exclusive physiological ligands for the mammalian PAC1 receptor. The role of C-terminal amidation of these ligands at that receptor was examined in neuroendocrine cells expressing the PAC1 receptor endogenously and in non-neuroendocrine cells in which the human and rat PAC1 receptors were expressed from stable single-copy genes driven by the CMV promoter, providing stoichiometrically appropriate levels of this Gs-coupled GPCR in order to examine the potency and intrinsic activity of PACAP ligands and their des-amidated congeners. We found that replacement of the C-terminal glycine residues of PACAP-27 and -38 with a free acid; or extension of either peptide with the two to three amino acids normally found at these positions in PACAP processing intermediates in vivo following endoproteolytic cleavage and after exoproteolytic trimming and glycine-directed amidated, were equivalent in potency to the fully processed peptides in a variety of cell-based assays. These included real-time monitoring of cyclic AMP generation in both NS-1 neuroendocrine cells and non-neuroendocrine HEK293 cells; PKA-dependent gene activation in HEK293 cells; and neuritogenesis and cell growth arrest in NS-1 cells. The specific implications for the role of amidation in arming of secretin-related neuropeptides for biological function, and the general implications for neuropeptide-based delivery in the context of gene therapy, are discussed.  相似文献   

18.
The interaction of estrogen with its receptor from rabbit uterus was studied using the affinity labeling technique. An affinity labeling reagent, 3-hydroxy-17β-(p-nitrophenyldithio)-1,3,5(10)-estratriene (Reagent A) was synthesized. The compound was designed to meet two requirements: (1) it binds specifically to the steroid-binding site of the receptor; (2) it has functional group capable of forming a covalent bond with an amino acid residue at or near the binding site. The first requirement was demonstrated by competitive binding assay and sedimentation analysis. If the binding affinity of 17β-estradiol is defined as 100, that of Reagent A is found to be 0.05. It was shown that the binding was specific for the estradiol receptor. The second requirement was examined by extraction of Reagent A with simple model compounds. 10 μM Reagent A gave rise to approx. 1.3 μM p-nitrothiophenol in the presence of a large excess of l-cysteine or reduced l-glutathione under the experimental conditions employed, indicating that a covalent bond was formed between Reagent A and the model compounds. Furthermore, I have presented evidence by using polyacrylamide gel electrophoresis that 3H-labeled Reagent A is linked covalently to the estrogen-binding site on the receptor of rabbit uterus. The experiment also fulfilled the first requirement. These results indicate that the thiol group present at the binding site is directly involved in the estradiol-receptor binding.  相似文献   

19.
The solution structure of monomeric stromal cell-derived factor-1alpha (SDF-1alpha), the natural ligand for the CXCR4 G-coupled receptor, has been solved by multidimensional heteronuclear NMR spectroscopy. The structure has a characteristic chemokine fold and is in excellent agreement with the individual subunits observed in the crystal structures of dimeric SDF-1alpha. Using various peptides derived from the N-terminal extracellular tail of the CXCR4 receptor, we show that the principal determinants of binding reside in the N-terminal 17 residues of CXCR4, with a major contribution from the first six residues. From 15N/1HN chemical shift pertubation studies we show that the interaction surface on SDF-1alpha is formed by the undersurface of the three-stranded antiparallel beta-sheet bounded by the N-terminal loop on one side and the C-terminal helix on the other. This surface overlaps with but is not identical to that mapped on several other chemokines for the binding of equivalent peptides derived from their respective receptors.  相似文献   

20.
In the central nervous system, the activation of neuronal nitric oxide synthase (nNOS) is closely associated with activation of NMDA receptor, and trafficking of nNOS may be a prerequisite for efficient NO production at synapses. We recently demonstrated that pituitary adenylate cyclase activating polypeptide (PACAP) and NMDA synergistically caused the translocation of nNOS to the membrane and stimulated NO production in PC12 (pheochromocytoma) cells. However, the mechanisms responsible for trafficking and activation of nNOS are largely unknown. To address these issues, here we constructed a yellow fluorescent protein (YFP)-tagged nNOS N-terminal (1–299 a.a.) mutant, nNOSNT-YFP, and visualized its translocation in PC12 cells stably expressing it. PACAP enhanced the translocation synergistically with NMDA in a time- and concentration-dependent manner. The translocation was blocked by inhibitors of protein kinase A (PKA), protein kinase C (PKC), and Src kinase; and the effect of PACAP could be replaced with PKA and PKC activators. The β-finger region in the PSD-95/disc large/zonula occludens-1 domain of nNOS was required for the translocation of nNOS and its interaction with post-synaptic density-95 (PSD-95), and NO formation was attenuated by dominant negative nNOSNT-YFP. These results demonstrate that PACAP stimulated nNOS translocation mediated by PKA and PKC via PAC1-receptor (a PACAP receptor) and suggest cross-talk between PACAP and NMDA for nNOS activation by Src-dependent phosphorylation of NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号