首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein tyrosine sulfation is a ubiquitous post-translational modification (PTM) of secreted and transmembrane proteins that pass through the Golgi apparatus. In this study, we developed a new method for protein tyrosine sulfation prediction based on a nearest neighbor algorithm with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). We incorporated features of sequence conservation, residual disorder, and amino acid factor, 229 features in total, to predict tyrosine sulfation sites. From these 229 features, 145 features were selected and deemed as the optimized features for the prediction. The prediction model achieved a prediction accuracy of 90.01% using the optimal 145-feature set. Feature analysis showed that conservation, disorder, and physicochemical/biochemical properties of amino acids all contributed to the sulfation process. Site-specific feature analysis showed that the features derived from its surrounding sites contributed profoundly to sulfation site determination in addition to features derived from the sulfation site itself. The detailed feature analysis in this paper might help understand more of the sulfation mechanism and guide the related experimental validation.  相似文献   

2.
The attachment of palmitic acid to the amino acid cysteine via thioester linkage (S-palmitoylation) is a common post-translational modification of eukaryotic proteins. In this review, we discuss the role of palmitoylation as a versatile protein sorting signal, regulating protein trafficking between distinct intracellular compartments and the micro-localization of proteins within membranes.  相似文献   

3.
Zheng LL  Niu S  Hao P  Feng K  Cai YD  Li Y 《PloS one》2011,6(12):e28221
Pyrrolidone carboxylic acid (PCA) is formed during a common post-translational modification (PTM) of extracellular and multi-pass membrane proteins. In this study, we developed a new predictor to predict the modification sites of PCA based on maximum relevance minimum redundancy (mRMR) and incremental feature selection (IFS). We incorporated 727 features that belonged to 7 kinds of protein properties to predict the modification sites, including sequence conservation, residual disorder, amino acid factor, secondary structure and solvent accessibility, gain/loss of amino acid during evolution, propensity of amino acid to be conserved at protein-protein interface and protein surface, and deviation of side chain carbon atom number. Among these 727 features, 244 features were selected by mRMR and IFS as the optimized features for the prediction, with which the prediction model achieved a maximum of MCC of 0.7812. Feature analysis showed that all feature types contributed to the modification process. Further site-specific feature analysis showed that the features derived from PCA's surrounding sites contributed more to the determination of PCA sites than other sites. The detailed feature analysis in this paper might provide important clues for understanding the mechanism of the PCA formation and guide relevant experimental validations.  相似文献   

4.
Li BQ  Hu LL  Niu S  Cai YD  Chou KC 《Journal of Proteomics》2012,75(5):1654-1665
S-nitrosylation (SNO) is one of the most important and universal post-translational modifications (PTMs) which regulates various cellular functions and signaling events. Identification of the exact S-nitrosylation sites in proteins may facilitate the understanding of the molecular mechanisms and biological function of S-nitrosylation. Unfortunately, traditional experimental approaches used for detecting S-nitrosylation sites are often laborious and time-consuming. However, computational methods could overcome this demerit. In this work, we developed a novel predictor based on nearest neighbor algorithm (NNA) with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). The features of physicochemical/biochemical properties, sequence conservation, residual disorder, amino acid occurrence frequency, second structure and the solvent accessibility were utilized to represent the peptides concerned. Feature analysis showed that the features except residual disorder affected identification of the S-nitrosylation sites. It was also shown via the site-specific feature analysis that the features of sites away from the central cysteine might contribute to the S-nitrosylation site determination through a subtle manner. It is anticipated that our prediction method may become a useful tool for identifying the protein S-nitrosylation sites and that the features analysis described in this paper may provide useful insights for in-depth investigation into the mechanism of S-nitrosylation.  相似文献   

5.
Protein palmitoylation is a major dynamic posttranslational regulator of protein function. However, mechanisms that control palmitoylation are poorly understood. In many proteins, palmitoylation occurs at cysteine residues juxtaposed to membrane-anchoring domains such as transmembrane helices, sites of irreversible lipid modification, or hydrophobic and/or polybasic domains. In particular, polybasic domains represent an attractive mechanism to dynamically control protein palmitoylation, as the function of these domains can be dramatically influenced by protein phosphorylation. Here we demonstrate that a polybasic domain immediately upstream of palmitoylated cysteine residues within an alternatively spliced insert in the C terminus of the large conductance calcium- and voltage-activated potassium channel is an important determinant of channel palmitoylation and function. Mutation of basic amino acids to acidic residues within the polybasic domain results in inhibition of channel palmitoylation and a significant right-shift in channel half maximal voltage for activation. Importantly, protein kinase A-dependent phosphorylation of a single serine residue within the core of the polybasic domain, which results in channel inhibition, also reduces channel palmitoylation. These data demonstrate the key role of the polybasic domain in controlling stress-regulated exon palmitoylation and suggests that phosphorylation controls the domain by acting as an electrostatic switch.  相似文献   

6.
Regulator of G protein signaling (RGS) proteins act as negative regulators of G protein coupled signaling by accelerating the GTPase activity of the G proteins subunits. Reversible palmitoylation, a common post-translational modification for various components of the G protein-coupled signaling pathway, plays an important role in the modulation of protein activity. RGS2 appears to act selectively to increase the GTPase activity of Gq when single turnover assays are preformed in solution. However, less attention has been paid to the effects of palmitoylation of RGS2 on its conformation and GTPase-activating activity. Studies of palmitoylation on a series of RGS2 mutants in which alanine was substituted for cysteine revealed cysteine 106, 116 and 199 to be multiple putative palmitoylation sites in RGS2, the efficiency of palmitate incorporation being about 60% at each individual palmitoylation site. Palmitoylation of RGS2 inhibited the GTPase-activating activity toward a GTPase-deficient R183C mutant of Gq in vitro, but mutation of cysteine 116 eliminated the inhibition of palmitoylation on GTPase-activating activity of RGS2. The effect of palmitoylation on conformation of RGS2 was examined by monitoring spectra of the intrinsic fluorescence and Circular Dichroism. The results suggested that GTPase-activating activity change of RGS2 might be related to conformational change of RGS2 upon palmitoylation. Taken together, these results provided clear and strong experimental evidence for palmitoylation sites in RGS2 as well as for effect of palmitoylation on the GTPase-activating activity and conformation of RGS2.  相似文献   

7.
Cai Y  Huang T  Hu L  Shi X  Xie L  Li Y 《Amino acids》2012,42(4):1387-1395
Ubiquitination, one of the most important post-translational modifications of proteins, occurs when ubiquitin (a small 76-amino acid protein) is attached to lysine on a target protein. It often commits the labeled protein to degradation and plays important roles in regulating many cellular processes implicated in a variety of diseases. Since ubiquitination is rapid and reversible, it is time-consuming and labor-intensive to identify ubiquitination sites using conventional experimental approaches. To efficiently discover lysine-ubiquitination sites, a sequence-based predictor of ubiquitination site was developed based on nearest neighbor algorithm. We used the maximum relevance and minimum redundancy principle to identify the key features and the incremental feature selection procedure to optimize the prediction engine. PSSM conservation scores, amino acid factors and disorder scores of the surrounding sequence formed the optimized 456 features. The Mathew’s correlation coefficient (MCC) of our ubiquitination site predictor achieved 0.142 by jackknife cross-validation test on a large benchmark dataset. In independent test, the MCC of our method was 0.139, higher than the existing ubiquitination site predictor UbiPred and UbPred. The MCCs of UbiPred and UbPred on the same test set were 0.135 and 0.117, respectively. Our analysis shows that the conservation of amino acids at and around lysine plays an important role in ubiquitination site prediction. What’s more, disorder and ubiquitination have a strong relevance. These findings might provide useful insights for studying the mechanisms of ubiquitination and modulating the ubiquitination pathway, potentially leading to potential therapeutic strategies in the future.  相似文献   

8.
As shown in the companion article, tubulin is posttranslationally modified in vivo by palmitoylation. Our goal in this study was to identify the palmitoylation sites by protein structure analysis. To obtain quantities of palmitoylated tubulin required for this analysis, a cell-free system for enzymatic [3H]palmitoylation was developed and characterized in our companion article. We then developed a methodology to examine directly the palmitoylation of all 451 amino acids of alpha-tubulin. 3H-labeled palmitoylated alpha-tubulin was cleaved with cyanogen bromide (CNBr). The CNBr digest was resolved according to peptide size by gel filtration on Sephadex LH60 in formic acid:ethanol. The position of 3H-labeled palmitoylated amino acids in peptides could not be identified by analysis of the Edman degradation sequencer product because the palmitoylated sequencer products were lost during the final derivatization step to phenylthiohydantoin derivatives. Modification of the gas/liquid-phase sequencer to deliver the intermediate anilinothiozolinone derivative, rather than the phenylthiohydantoin derivative, identified the cycle containing the 3H-labeled palmitoylated residue. Therefore, structure analysis of peptides obtained from gel filtration necessitated dual sequencer runs of radioactive peptides, one for sequence analysis and one to identify 3H-labeled palmitoylated amino acids. Further cleavage of the CNBr peptides by trypsin and Lys-C protease, followed by gel filtration on Sephadex LH60 and dual sequencer runs, positioned the 3H-labeled palmitoylated amino acid residues in peptides. Integration of all the available structural information led to the assignment of the palmitoyl moiety to specific residues in alpha-tubulin. The palmitoylated residues in alpha-tubulin were confined to cysteine residues only. The major site for palmitoylation was cysteine residue 376.  相似文献   

9.
Schey KL  Gutierrez DB  Wang Z  Wei J  Grey AC 《Biochemistry》2010,49(45):9858-9865
Fatty acid acylation of proteins is a well-studied co- or posttranslational modification typically conferring membrane trafficking signals or membrane anchoring properties to proteins. Commonly observed examples of protein acylation include N-terminal myristoylation and palmitoylation of cysteine residues. In the present study, direct tissue profiling mass spectrometry of bovine and human lens sections revealed an abundant signal tentatively assigned as a lipid-modified form of aquaporin-0. LC/MS/MS proteomic analysis of hydrophobic tryptic peptides from lens membrane proteins revealed both N-terminal and C-terminal peptides modified by 238 and 264 Da which were subsequently assigned by accurate mass measurement as palmitoylation and oleoylation, respectively. Specific sites of modification were the N-terminal methionine residue and lysine 238 revealing, for the first time, an oleic acid modification via an amide linkage to a lysine residue. The specific fatty acids involved reflect their abundance in the lens fiber cell plasma membrane. Imaging mass spectrometry indicated abundant acylated AQP0 in the inner cortical region of both bovine and human lenses and acylated truncation products in the lens nucleus. Additional analyses revealed that the lipid-modified forms partitioned exclusively to a detergent-resistant membrane fraction, suggesting a role in membrane domain targeting.  相似文献   

10.
Palmitoylation is the thioester linkage of the fatty acid, palmitate (C16:0), to cysteine residues on a protein or peptide. This dynamic and reversible post-translational modification increases the hydrophobicity of proteins/peptides, facilitating protein-membrane interactions, protein-protein interactions and intracellular trafficking of proteins. Manipulation of palmitoylation provides a new mechanism for control over protein location and function, which may lead to better understanding of cell signaling disorders, such as cancer. Unfortunately, few methods exist to quantitatively monitor protein or peptide palmitoylation. In this study, a capillary electrophoresis-based assay was developed, using MEKC, to measure palmitoylation of a fluorescently-labeled peptide in vitro. A fluorescently-labeled peptide derived from the growth-associated protein, GAP-43, was palmitoylated in vitro using palmitoyl coenzyme A. Formation of a doubly palmitoylated GAP-peptide product was confirmed by mass spectrometry. The GAP-peptide substrate was separated from the palmitoylated peptide product in less than 7 min by MEKC. The rate of in vitro palmitoylation with respect to reaction time, GAP-peptide concentration, pH, and inhibitor concentration were also examined. This capillary electrophoresis-based assay for monitoring palmitoylation has applications in biochemical studies of acyltransferases and thioesterases as well as in the screening of acyltransferase and thioesterase inhibitors for drug development.  相似文献   

11.
12.
Mutations in Cu,Zn-superoxide dismutase (mtSOD1) cause familial amyotrophic lateral sclerosis (FALS), a neurodegenerative disease resulting from motor neuron degeneration. Here, we demonstrate that wild type SOD1 (wtSOD1) undergoes palmitoylation, a reversible post-translational modification that can regulate protein structure, function, and localization. SOD1 palmitoylation was confirmed by multiple techniques, including acyl-biotin exchange, click chemistry, cysteine mutagenesis, and mass spectrometry. Mass spectrometry and cysteine mutagenesis demonstrated that cysteine residue 6 was the primary site of palmitoylation. The palmitoylation of FALS-linked mtSOD1s (A4V and G93A) was significantly increased relative to that of wtSOD1 expressed in HEK cells and a motor neuron cell line. The palmitoylation of FALS-linked mtSOD1s (G93A and G85R) was also increased relative to that of wtSOD1 when assayed from transgenic mouse spinal cords. We found that the level of SOD1 palmitoylation correlated with the level of membrane-associated SOD1, suggesting a role for palmitoylation in targeting SOD1 to membranes. We further observed that palmitoylation occurred predominantly on disulfide-reduced as opposed to disulfide-bonded SOD1, suggesting that immature SOD1 is the primarily palmitoylated species. Increases in SOD1 disulfide bonding and maturation with increased copper chaperone for SOD1 expression caused a decrease in wtSOD1 palmitoylation. Copper chaperone for SOD1 overexpression decreased A4V palmitoylation less than wtSOD1 and had little effect on G93A mtSOD1 palmitoylation. These findings suggest that SOD1 palmitoylation occurs prior to disulfide bonding during SOD1 maturation and that palmitoylation is increased when disulfide bonding is delayed or decreased as observed for several mtSOD1s.  相似文献   

13.
Roth AF  Wan J  Bailey AO  Sun B  Kuchar JA  Green WN  Phinney BS  Yates JR  Davis NG 《Cell》2006,125(5):1003-1013
Protein palmitoylation is a reversible lipid modification that regulates membrane tethering for key proteins in cell signaling, cancer, neuronal transmission, and membrane trafficking. Palmitoylation has proven to be a difficult study: Specifying consensuses for predicting palmitoylation remain unavailable, and first-example palmitoylation enzymes--i.e., protein acyltransferases (PATs)--were identified only recently. Here, we use a new proteomic methodology that purifies and identifies palmitoylated proteins to characterize the palmitoyl proteome of the yeast Saccharomyces cerevisiae. Thirty-five new palmitoyl proteins are identified, including many SNARE proteins and amino acid permeases as well as many other participants in cellular signaling and membrane trafficking. Analysis of mutant yeast strains defective for members of the DHHC protein family, a putative PAT family, allows a matching of substrate palmitoyl proteins to modifying PATs and reveals the DHHC family to be a family of diverse PAT specificities responsible for most of the palmitoylation within the cell.  相似文献   

14.
Hu LL  Niu S  Huang T  Wang K  Shi XH  Cai YD 《PloS one》2010,5(12):e15917

Background

Hydroxylation is an important post-translational modification and closely related to various diseases. Besides the biotechnology experiments, in silico prediction methods are alternative ways to identify the potential hydroxylation sites.

Methodology/Principal Findings

In this study, we developed a novel sequence-based method for identifying the two main types of hydroxylation sites – hydroxyproline and hydroxylysine. First, feature selection was made on three kinds of features consisting of amino acid indices (AAindex) which includes various physicochemical properties and biochemical properties of amino acids, Position-Specific Scoring Matrices (PSSM) which represent evolution information of amino acids and structural disorder of amino acids in the sliding window with length of 13 amino acids, then the prediction model were built using incremental feature selection method. As a result, the prediction accuracies are 76.0% and 82.1%, evaluated by jackknife cross-validation on the hydroxyproline dataset and hydroxylysine dataset, respectively. Feature analysis suggested that physicochemical properties and biochemical properties and evolution information of amino acids contribute much to the identification of the protein hydroxylation sites, while structural disorder had little relation to protein hydroxylation. It was also found that the amino acid adjacent to the hydroxylation site tends to exert more influence than other sites on hydroxylation determination.

Conclusions/Significance

These findings may provide useful insights for exploiting the mechanisms of hydroxylation.  相似文献   

15.
Numerous proteins that are involved in cell signaling and viral replication require post-translational modification by palmitoylation to function properly. The molecular details by which this palmitoyl modification affects protein function remain poorly understood. To facilitate in vitro biochemical and structural studies of the role of palmitoylation on protein function, a method was developed for alkylating peptides with saturated C16 groups at cysteine residues and demonstrated using peptides derived from the palmitoylated region of Sindbis virus E2 glycoprotein. The synthetic approach takes advantage of disulfide chemistry to specifically modify only the cysteine residues within peptides and covalently links C16 groups via disulfide bridges using a new thioalkylating reagent, hexyldexyldithiopyridine. The chemistry presented here takes place in solution under mild conditions without the need for protection of the peptide functional groups. A method for purifying these modified peptides is also described. This protocol can be of general use to investigators studying the role of palmitoylation in biological systems.  相似文献   

16.
Proteins with N-terminal cysteine can undergo native chemical ligation and are useful for site-specific N-terminal labeling or protein semisynthesis. Recombinant production of these has usually been by site-specific cleavage of a precursor fusion protein at an internal cysteine residue. Here we describe a simpler route to producing these proteins. Overexpression in E. coli of several proteins containing cysteine as the second amino acid residue yielded products in which the initiating methionine residue had been completely cleaved by endogenous methionine aminopeptidase. While secondary modification of the terminal cysteine was a complicating factor, conditions were identified to eliminate or minimize this problem. Recombinant proteins produced in this way were suitable for site-specific modification of the amino terminus via native chemical ligation technology, as demonstrated by conjugation of a thioester-containing derivative of fluorescein to one such protein. The ability to directly produce proteins with N-terminal cysteine should simplify the application of native chemical ligation technology to recombinant proteins and make the technique more amenable to researchers with limited expertise in protein chemistry.  相似文献   

17.
Palmitoylation refers to a dynamic post-translational modification of proteins involving the covalent attachment of long-chain fatty acids to the side chains of cysteine, threonine or serine residues. In recent years, palmitoylation has been identified as a widespread modification of both viral and cellular proteins. Because of its dynamic nature, protein palmitoylation, like phosphorylation, appears to have a crucial role in the functioning of the nervous system. Several important questions regarding the post-translational acylation of cysteine residues in proteins are briefly discussed: (a) What are the molecular mechanisms involved in dynamic acylation? (b) What are the determinants of the fatty acid specificity and the structural requirements of the acceptor proteins? (c) What are the physiological signals regulating this type of protein modification, and (d) What is the biological role(s) of this reaction with respect to the functioning of specific nervous system proteins? We also present the current experimental obstacles that have to be overcome to fully understand the biology of this dynamic modification.  相似文献   

18.
The palmitoylation site of the membrane glycoprotein E1 of Semliki Forest virus (SFV) has been identified by chemical analysis of an acylpeptide. 3H-Palmitoylated E1 isolated from SFV grown in baby hamster kidney cells was digested with chymotrypsin and the resulting peptides subjected to high performance liquid chromatography on a wide-pore column. The 3H-acylated peptide fraction peaked at above 60% 2-propanol in the eluent, indicating its hydrophobic character. Polyacrylamide gel electrophoresis analysis revealed a molecular weight of about Mr = 6000 for the radiolabeled peptide. Manual sequencing of this material by the 4-N,N'-dimethylaminoazobenzene-4'-isothiocyanate/phenylisothiocyanate procedure on solid phase revealed the amino-terminal sequence Ala-Ala-Ser-His-Ser-Asn-Val-Val-Phe-Pro. The same peptide also labels with [35S]cysteine. Comparison with the deduced amino acid sequence of E1 revealed that the palmitoylated peptide contains at least 43 amino acid residues, and thus includes the membrane spanning region down to the only cysteine residue five positions up from the carboxyl terminus of E1. Since [3H]palmitic acid was cleaved from E1 with thiol reagents, and since the peptide labels with [14C]iodoacetamide only after the release of fatty acids by hydroxylamine treatment, cysteine in position 433 represents the palmitoylation site in SFV E1.  相似文献   

19.
Chp (Cdc42 homologous protein) shares significant sequence and functional identity with the human Cdc42 small GTPase, and like Cdc42, promotes formation of filopodia and activates the p21-activated kinase serine/threonine kinase. However, unlike Cdc42, Chp contains unique amino- and carboxyl-terminal extensions. Here we determined whether Chp, like Cdc42, can promote growth transformation and evaluated the role of the amino- and carboxyl-terminal sequences in Chp function. Surprisingly, we found that a GTPase-deficient mutant of Chp exhibited low transforming activity but that deletion of the amino terminus of Chp greatly enhanced its transforming activity. Thus, the amino terminus may serve as a negative regulator of Chp function. The carboxyl terminus of Cdc42 contains a CAAX (where C is cysteine, A is aliphatic amino acid, X is terminal amino acid) tetrapeptide sequence that signals for the posttranslational modification critical for Cdc42 membrane association and biological function. Although Chp lacks aCAAXmotif, we found that Chp showed carboxyl terminus-dependent localization to the plasma membrane and to endosomes. Furthermore, an intact carboxyl terminus was required for Chp transforming activity. However, treatment with inhibitors of protein palmitoylation, but not prenylation, caused Chp to mislocalize to the cytoplasm. Thus, Chp depends on palmitoylation, rather than isoprenylation, for membrane association and function. In summary, Chp is implicated in cell transformation, and the unique amino and carboxyl termini of Chp represent atypical mechanisms of regulation of Rho GTPase function.  相似文献   

20.
Over the past 30 years, several hundred eukaryotic proteins spanning from yeast to man have been shown to be S-palmitoylated. This post-translational modification involves the reversible addition of a 16-carbon saturated fatty acyl chain onto the cysteine residue of a protein where it regulates protein membrane association and distribution, conformation, and stability. However, the large-scale proteome-wide discovery of new palmitoylated proteins has been hindered by the difficulty of identifying a palmitoylation consensus sequence. Using a bioinformatics approach, we show that the enrichment of hydrophobic and basic residues, the cellular context of the protein, and the structural features of the residues surrounding the palmitoylated cysteine all influence the likelihood of palmitoylation. We developed a new palmitoylation predictor that incorporates these identified features, and this predictor achieves a Matthews Correlation Coefficient of .74 using 10-fold cross validation, and significantly outperforms existing predictors on unbiased testing sets. This demonstrates that palmitoylation sites can be predicted with accuracy by taking into account not only physiochemical properties of the modified cysteine and its surrounding residues, but also structural parameters and the subcellular localization of the modified cysteine. This will allow for improved predictions of palmitoylated residues in uncharacterized proteins. A web-based version of this predictor is currently under development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号