首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic (III) methyltransferase (AS3MT) catalyzes the process of arsenic methylation. Each arsenite (iAs3+) binds to three cysteine residues, methylarsenite (MMA3+) binds to two, and dimethylarsenite (DMA3+) binds to one. However, only two As-binding sites (Cys156 and Cys206) have been confirmed on human AS3MT (hAS3MT). The third As-binding site is still undefined. Residue Cys72 in Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM) may be the third As-binding site. The corresponding residue in hAS3MT is Cys61. Functions of Cys32, Cys61, and Cys85 in hAS3MT are unclear though Cys32, Cys61, and Cys85 in rat AS3MT have no effect on the enzyme activity. This is why the functions of Cys32, Cys61, and Cys85 in hAS3MT merit investigation. Here, three mutants were designed, C32S, C61S, and C85S. Their catalytic activities and conformations were determined, and the catalytic capacities of C156S and C206S were studied. Unlike C85S, mutants C32S and C61S were completely inactive in the methylation of iAs3+ and active in the methylation of MMA3+. The catalytic activity of C85S was also less pronounced than that of WT-hAS3MT. All these findings suggest that Cys32 and Cys61 markedly influence the catalytic activity of hAS3MT. Cys32 and Cys61 are necessary to the first step of methylation but not to the second. Cys156 and Cys206 are required for both the first and second steps of methylation. The SC32 is located far from arsenic in the WT-hAS3MT-SAM-As model. The distances between SC61 and arsenic in WT-hAS3MT-As and WT-hAS3MT-SAM-As models are 7.5 Å and 4.1 Å, respectively. This indicates that SAM-binding to hAS3MT shortens the distance between SC61 and arsenic and promotes As-binding to hAS3MT. This is consistent with the fact that SAM is the first substrate to bind to hAS3MT and iAs is the second. Model of WT-hAS3MT-SAM-As and the experimental results indicate that Cys61 is the third As-binding site.  相似文献   

2.
Arsenic (III) methyltransferase (AS3MT) is a cysteine (Cys)-rich enzyme that catalyzes the biomethylation of arsenic. To investigate how these crucial Cys residues promote catalysis, we used matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) to analyze Cys residues in recombinant human arsenic (III) methyltransferase (hAS3MT). We detected two disulfide bonds, Cys250-Cys32 and Cys368-Cys369, in hAS3MT. The Cys250-Cys32 disulfide bond was reduced by glutathione (GSH) or other disulfide bond reductants before the enzymatic methylation of arsenite (iAs3+). In addition to exposing residues around the active sites, cleavage of the Cys250-Cys32 pair modulated the conformation of hAS3MT. This adjustment may stabilize the binding of S-Adenosyl-L-methionine (AdoMet) and favor iAs3+ binding to hAS3MT. Additionally, we observed the intermediate of Cys250-S-adenosylhomocysteine (AdoHcy), suggesting that Cys250 is involved in the transmethylation. In recovery experiments, we confirmed that trivalent arsenicals were substrates for hAS3MT, methylation of arsenic occurred on the enzyme, and an intramolecular disulfide bond might be formed after iAs3+ was methylated to dimethylarsinous acid (DMA3+). In this work, we clarified both the functional roles of GSH and the crucial Cys residues in iAs3+ methylation catalyzed by hAS3MT.  相似文献   

3.
This report demonstrates that transition metal ions and selenite affect the arsenite methylation by the recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT) in vitro. Co2+, Mn2+, and Zn2+ inhibited the arsenite methylation by hAS3MT in a concentration-dependent manner and the kinetics indicated Co2+ and Mn2+ to be mixed (competitive and non-competitive) inhibitors while Zn2+ to be a competitive inhibitor. However, only a high concentration of Fe2+ could restrain the methylation. UV-visible, CD and fluorescence spectroscopy were used to study the interactions between the metal ions above and hAS3MT. Further studies showed that neither superoxide anion nor hydrogen peroxide was involved in the transition metal ion or selenite inhibition of hAS3MT activity. The inhibition of arsenite methylating activity of hAS3MT by selenite was reversed by 2 mM DTT (dithiothreitol) but neither by cysteine nor by β-mercaptoethanol. Whereas, besides DTT, cysteine can also prevent the inhibition of hAS3MT activity by Co2+, Mn2+, and Zn2+. Free Cys residues were involved in the interactions of transition metal ions or selenite with hAS3MT. It is proposed that the inhibitory effect of the ions (Co2+, Mn2+, and Zn2+) or selenite on hAS3MT activity might be via the interactions of them with free Cys residues in hAS3MT to form inactive protein adducts.  相似文献   

4.
In the human body, arsenic is metabolized by methylation. Understanding this process is important and provides insight into the relationship between arsenic and its related diseases. We used the rapid equilibrium kinetic model to study the reaction sequence of arsenite methylation. The results suggest that the mechanism for arsenite methylation is a completely ordered mechanism that is also of general interest in reaction systems with different reductants, such as tris(2-carboxyethyl)phosphine, cysteine, and glutathione. In the reaction, cysteine residues of recombinant human arsenic (+3 oxidation state) methyltransferase (hAS3MT) coordinate with arsenicals and involve the methyl transfer step. S-Adenosyl-l-methionine (AdoMet) is the first-order reactant, which modulates the conformation of hAS3MT to a best matched state by hydrophobic interaction. As the second-order reactant, reductant reduces the disulfide bond, most likely between Cys-250 and another cysteine residue of hAS3MT, and exposes the active site cysteine residues for binding trivalent inorganic arsenic (iAs3+) to give monomethylarsonic dicysteine (MADC3+). In addition, the reaction can be extended to further methylate MADC3+ to dimethylarsinic cysteine (DAMC3+). In the methylation reaction, the β-pleated sheet content of hAS3MT is increased, and the hydrophobicity of the microenvironment around the active sites is decreased. Similarly, we confirm that both the high β-pleated sheet content of hAS3MT and the high dissociation ability of the enzyme-AdoMet-reductant improve the yield of dimethylated arsenicals.  相似文献   

5.
6.
Marapakala K  Qin J  Rosen BP 《Biochemistry》2012,51(5):944-951
The enzyme As(III) S-adenosylmethionine methyltransferase (EC 2.1.1.137) (ArsM or AS3MT) is found in members of every kingdom, from bacteria to humans. In these enzymes, there are three conserved cysteine residues at positions 72, 174, and 224 in the CmArsM orthologue from the thermophilic eukaryotic alga Cyanidioschyzon sp. 5508. Substitution of any of the three led to loss of As(III) methylation. In contrast, a C72A mutant still methylated trivalent methylarsenite [MAs(III)]. Protein fluorescence of a single-tryptophan mutant reported binding of As(III) or MAs(III). As(GS)(3) and MAs(GS)(2) bound significantly faster than As(III), suggesting that the glutathionylated arsenicals are preferred substrates for the enzyme. Protein fluorescence also reported binding of Sb(III), and the purified enzyme methylated and volatilized Sb(III). The results suggest that all three cysteine residues are necessary for the first step in the reaction, As(III) methylation, but that only Cys174 and Cys224 are required for the second step, methylation of MAs(III) to dimethylarsenite [DMAs(III)]. The rate-limiting step was identified as the conversion of DMAs(III) to trimethylarsine, and DMAs(III) accumulates as the principal product.  相似文献   

7.
The catalytic mechanism of the recombinant human arsenic (+3) methyltransferase (hAS3MT) was studied using kinetics, initial velocity and spectroscopy. The production and the distribution of methylated arsenicals changed with various concentrations of arsenite/S-adenosyl-l-methionine (SAM)/thiols, enzyme contents, and incubation times. These results suggest a sequential methylation of arsenite to monomethylated arsenicals (MMA) and dimethylated arsenicals (DMA). In addition, competition exists between the two reactions. hAS3MT showed the greatest activity at pH 8.5 with glutathione (GSH) as the reductant. This might indicate that a balance between the deprotonation and protonation of sulfhydryl groups is required. Initial velocity studies illuminate an ordered sequence for the binding of SAM and arsenite to the hAS3MT; while GSH should probably be placed either as the first reactant or as a reactant combining with the enzyme only after products have been released. The interactions between substrate/cofactors and the hAS3MT were first monitored by UV-visible and circular dichroism spectroscopy. It revealed that arsenite and SAM combined with the hAS3MT before reaction started; whereas, no interactions between GSH and the hAS3MT were detected. Integrating the results from kinetics, initial velocity and spectroscopy studies, an ordered mechanism are originally attained, with the SAM as the first reactant that adds to the hAS3MT and arsenite as the second one. Arsenite is successively methylated reductively, rather than a stepwise oxidative methylation. GSH should combine with the hAS3MT after the methylation to reduce the disulfide bond formed during the catalytic cycle in the hAS3MT to resume the active form of the enzyme.  相似文献   

8.
Residues Tyr59, Gly78, Ser79, Met103, Gln107, Ile136 and Glu137 in human arsenic (+3 oxidation state) methyltransferase (hAS3MT) were deduced to form a potential hydrogen bond network around S-adenosylmethionine (SAM) from the sequence alignment between Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM) and hAS3MT. Herein, seven mutants Y59A, G78A, S79A, M103A, Q107A, I136A and E137A were obtained. Their catalytic activities and conformations were characterized and models were built. Y59A and G78A were completely inactive. Only 7.0%, 10.6% and 13.8% inorganic arsenic (iAs) was transformed to monomethylated arsenicals (MMA) when M103A, Q107A and I136A were used as the enzyme. The Vmax (the maximal velocity of the reaction) values of M103A, Q107A, I136A and E137A were decreased to 8%, 22%, 15% and 50% of that of WT-hAS3MT, respectively. The KM(SAM) (the Michaelis constant for SAM) values of mutants M103A, I136A and E137A were 15.7, 8.9 and 5.1 fold higher than that of WT-hAS3MT, respectively, indicating that their affinities for SAM were weakened. The altered microenvironment of SAM and the reduced capacity of binding arsenic deduced from KM(As) (the Michaelis constant for iAs) value probably synergetically reduced the catalytic activity of Q107A. The catalytic activity of S79A was higher than that of WT despite of the higher KM(SAM), suggesting that Ser79 did not impact the catalytic activity of hAS3MT. In short, residues Tyr59 and Gly78 significantly influenced the catalytic activity of hAS3MT as well as Met103, Ile136 and Glu137 because they were closely associated with SAM-binding, while residue Gln107 did not affect SAM-binding regardless of affecting the catalytic activity of hAS3MT. Modeling and our experimental results suggest that the adenine ring of SAM is sandwiched between Ile136 and Met103, the amide group of SAM is hydrogen bonded to Gly78 in hAS3MT and SAM is bonded to Tyr59 with van der Waals, cation-π and hydrogen bonding contacts.  相似文献   

9.
Arsenic (As) biomethylation is an important component of the As biogeochemical cycle that can influence As toxicity and mobility in the environment. Biomethylation of As is catalyzed by the enzyme arsenite (As[III]) S‐adenosylmethionine methyltransferase (ArsM). To date, all identified ArsM orthologs with As(III) methylation activities have four conserved cysteine residues, which are thought to be essential for As(III) methylation. Here, we isolated an As(III)‐methylating bacterium, Bacillus sp. CX‐1, and identified a gene encoding a S‐adenosylmethionine methyltranserase termed BlArsM with low sequence similarities (≤ 39%) to other ArsMs. BlArsM has six cysteine residues (Cys10, Cys11, Cys145, Cys193, Cys195 and Cys268), three of which (Cys10, Cys145 and Cys195) align with conserved cysteine residues found in most ArsMs. BlarsM is constitutively expressed in Bacillus sp. CX‐1. Heterologous expression of BlarsM conferred As(III) resistance. Purified BlArsM methylated both As(III) and methylarsenite (MAs[III]), with a final product of dimethylarsenate (DMAs[V]). When all six cysteines were individually altered to serine residues, only C145S and C195S derivatives lost the ability to methylate As(III) and MAs(III). The derivative C10S/C11S/C193S/C268S was still active. These results suggest that BlArsM is a novel As(III) S‐adenosylmethionine methyltransferase requiring only two conserved cysteine residues. A model of As(III) methylation by BlArsM is proposed.  相似文献   

10.
The Moco (molybdenum cofactor) sulfurase ABA3 from Arabidopsis thaliana catalyses the sulfuration of the Moco of aldehyde oxidase and xanthine oxidoreductase, which represents the final activation step of these enzymes. ABA3 consists of an N-terminal NifS-like domain that exhibits L-cysteine desulfurase activity and a C-terminal domain that binds sulfurated Moco. The strictly conserved Cys430 in the NifS-like domain binds a persulfide intermediate, which is abstracted from the substrate L-cysteine and finally needs to be transferred to the Moco of aldehyde oxidase and xanthine oxidoreductase. In addition to Cys?3?, another eight cysteine residues are located in the NifS-like domain, with two of them being highly conserved among Moco sulfurase proteins and, at the same time, being in close proximity to Cys?3?. By determination of the number of surface-exposed cysteine residues and the number of persulfide-binding cysteine residues in combination with the sequential substitution of each of the nine cysteine residues, a second persulfide-binding cysteine residue, Cys2??, was identified. Furthermore, the active-site Cys?3? was found to be located on top of a loop structure, formed by the two flanking residues Cys?2? and Cys?3?, which are likely to form an intramolecular disulfide bridge. These findings are confirmed by a structural model of the NifS-like domain, which indicates that Cys?2? and Cys?3? are within disulfide bond distance and that a persulfide transfer from Cys?3? to Cys2?? is indeed possible.  相似文献   

11.
Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.  相似文献   

12.
Fibrillar α-synuclein (AS) is the major component of Lewy bodies, the pathological hallmark of Parkinson's disease. Mouse AS (mAS) aggregates much faster than human AS (hAS), although mAS differs from hAS at only seven positions in its primary sequence. Currently, little is known about the site-specific structural differences between mAS and hAS fibrils. Here, we applied state-of-the-art solid-state nuclear magnetic resonance (ssNMR) methods to structurally characterize mAS fibrils. The assignment strategy employed a set of high-resolution 2D and 3D ssNMR spectra recorded on uniformly [(13)C, (15)N], [1-(13)C]glucose, and [2-(13)C]glucose labeled mAS fibrils. An almost complete resonance assignment (96% of backbone amide (15)N and 93% of all (13)C nuclei) was obtained for residues from Gly41 to Val95, which form the core of mAS fibrils. Six β-strands were identified to be within the fibril core of mAS based on a secondary chemical shift and NHHC analysis. Intermolecular (13)C:(15)N labeled restraints obtained from mixed 1:1 (13)C/(15)N-labeled mAS fibrils reveal a parallel, in-register supramolecular β-sheet arrangement. The results were compared in detail to recent structural studies on hAS fibrils and indicate the presence of a structurally conserved motif comprising residues Glu61-Lys80.  相似文献   

13.
Aspergillus saitoi 1,2-alpha-mannosidase contains three conserved cysteine residues (Cys334, Cys363, and Cys443). We showed that Cys334 and Cys363 are involved in a disulfide bond, and that Cys443 contains a free thiol group. The cysteines were not essential for the activity analyzed by site-directed mutagenesis and kinetics. The substitution at each cysteine residue greatly destabilized the enzyme. The T(m) values of WT, C443A, C443G, C443S, and C443T were 55.8, 51.9, 50.2, 50.0, and 52.8 degrees C respectively. The specific activity of these mutants was almost equal to that of WT. Introducing Asp, Leu, Met, or Val at position 443 caused partial denaturation, although the enzymes had some activity. C443F, C443I, C443N, and C443Y were not secreted. These results suggest that the hydrophilic and large side chain causes the destabilization. Molecular modelling showed that the Cys443 residue is buried and surrounded by a hydrophobic environment. Cys334 and Cys363 form a disulfide bond, and Cys443 is involved in a hydrophobic interaction to stabilize the enzyme.  相似文献   

14.
Zona pellucida, a transparent envelope surrounding the mammalian oocyte, plays major roles in fertilization and consists of three or four glycoproteins. Primary structures, and especially the positions of cysteine (Cys) residues in the zona glycoproteins, are well conserved among mammals. In this study, we analyzed the disulfide linkages of pig ZP3 and ZP4 purified from ovaries. While disulfide linkage patterns of four Cys residues in the N-terminal halves of the ZP domains of ZP3 and ZP4 were identical to those previously reported for mice, rats, humans, and fish, the disulfide linkage patterns of six Cys residues in the C-terminal half of the ZP domain in ZP4, as well as eight Cys residues in the C-terminal region of the ZP domain and a following region unique to ZP3, were different from those previously reported. Thus, higher-order structures of zona glycoproteins might not be conserved in the C-terminal regions.  相似文献   

15.
Human alpha1,3 fucosyltransferases (FucTs) contain four highly conserved cysteine (Cys) residues, in addition to a free Cys residue that lies near the binding site for GDP-fucose (Holmes, E. H., Xu, Z. , Sherwood, A. L., and Macher, B. A. (1995) J. Biol. Chem. 270, 8145-8151). The participation of the highly conserved Cys residues in disulfide bonds and their functional significance were characterized by mass spectrometry (MS) analyses and site-directed mutagenesis, respectively. Among the human FucTs is a subset of enzymes (FucT III, V, and VI) having highly homologous sequences, especially in the catalytic domain, and Cys residues in FucT III and V were characterized. The amino acid sequence of FucT III was characterized. Peptides containing the four conserved Cys residues were detected after reduction and alkylation, and found to be involved in disulfide bonds. The disulfide bond pattern was characterized by multiple stage MS analysis and the use of Glu-C protease and MS/MS analysis. Disulfide bonds in FucT III occur between Cys residues (Cys(81) to Cys(338) and Cys(91) to Cys(341)) at the N and C termini of the catalytic domain, bringing these ends close together in space. Mutagenesis of highly conserved Cys residues to Ser in FucT V resulted in proteins lacking enzymatic activity. Three of the four mutants have molecular weights similar to wild type enzyme and maintained an ability to bind GDP, whereas the other (Cys(104)) produced a series of lower molecular weight bands when characterized by Western blot analysis, and did not bind GDP. FucTs have highly conserved, potential N-linked sites, and our mass spectrometry analyses demonstrated that both N-linked sites are modified with oligosaccharides.  相似文献   

16.
Disulfide bonding of lens crystallins contributes to the aggregation and insolubilization of these proteins that leads to cataract. A high concentration of reduced glutathione is believed to be key in preventing oxidation of crystallin sulfhydryls to form disulfide bonds. This protective role is decreased in aged lenses because of lower glutathione levels, especially in the nucleus. We recently found that human gamma-crystallins undergo S-methylation at exposed cysteine residues, a reaction that may prevent disulfide bonding. We report here that betaA1/A3-crystallins are also methylated at specific cysteine residues and are the most heavily methylated of the human lens crystallins. Among the methylated sites, Cys 64, Cys 99, and Cys 167 of betaA1-crystallin, methylation at Cys 99 is highest. Cys 64 and Cys 99 are also glutathiolated, even in a newborn lens. These post-translational modifications of the exposed cysteines may be important for maintaining the crystallin structure required for lens transparency. Previously unreported N-terminal truncations were also found.  相似文献   

17.
Granulins are a family of evolutionarily ancient proteins that are involved in regulating cell growth and division in animals. In this report a full-length cDNA, SPCP3, was isolated from senescent leaves of sweet potato (Ipomoea batatas). SPCP3 contains 1389 nucleotides (462 amino acids) in its open reading frame, and exhibits high amino acid sequence homologies (ca. 64-73.6%) with several plant granulin-containing cysteine proteases, including potato, tomato, soybean, kidney bean, pea, maize, rice, cabbage, and Arabidopsis. Gene structural analysis shows that SPCP3 encodes a putative precursor protein. Via cleavage of the N-terminal propeptide, it generates a protein with 324 amino acids (from the 139th to the 462nd amino acid residues), which contains two main domains: the conserved catalytic domain with the putative catalytic residues (the 163rd Cys, 299th His and 319th Asn) and the C-terminal granulin domain (from the 375th to the 462nd amino acid residues). Semi-quantitative RT-PCR and protein gel blot hybridization showed that SPCP3 gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was almost undetectable in mature green leaves, veins, and roots. Phylogenic analysis showed that SPCP3 displayed close association with a group of plant granulin-containing cysteine proteases which have been implied to be involved in programmed cell death. In conclusion, sweet potato SPCP3 is a functional, senescence-associated gene. Its mRNA and protein levels were significantly enhanced in natural and induced senescing leaves. The physiological role and/or function of SPCP3 associated with programmed cell death during leaf senescence were also discussed.  相似文献   

18.
The membrane type (MT) 6 matrix metalloproteinase (MMP) (MMP25) is a glycosylphosphatidylinositol-anchored matrix metalloproteinase (MMP) that is highly expressed in leukocytes and in some cancer tissues. We previously showed that natural MT6-MMP is expressed on the cell surface as a major reduction-sensitive form of M(r) 120, likely representing enzyme homodimers held by disulfide bridges. Among the membrane type-MMPs, the stem region of MT6-MMP contains three cysteine residues at positions 530, 532, and 534 which may contribute to dimerization. A systematic site-directed mutagenesis study of the Cys residues in the stem region shows that Cys(532) is involved in MT6-MMP dimerization by forming an intermolecular disulfide bond. The mutagenesis data also suggest that Cys(530) and Cys(534) form an intramolecular disulfide bond. The experimental observations on cysteines were also investigated by computational studies of the stem peptide, which validate these proposals. Dimerization is not essential for transport of MT6-MMP to the cell surface, partitioning into lipid rafts or cleavage of alpha-1-proteinase inhibitor. However, monomeric forms of MT6-MMP exhibited enhanced autolysis and metalloprotease-dependent degradation. Collectively, these studies establish the stem region of MT6-MMP as the dimerization interface, an event whose outcome imparts protease stability to the protein.  相似文献   

19.
Nicotinamide adenine dinucleotide (NAD) derives from quinolinic acid which is synthesized in Escherichia coli from l-aspartate and dihydroxyacetone phosphate through the concerted action of l-aspartate oxidase and the [4Fe-4S] quinolinate synthase (NadA). Here, we addressed the question of the identity of the cluster ligands. We performed in vivo complementation experiments as well as enzymatic, spectroscopic and structural in vitro studies using wild-type vs. Cys-to-Ala mutated NadA proteins. These studies reveal that only three cysteine residues, the conserved Cys113, Cys200 and Cys297, are ligands of the cluster. This result is in contrast to the previous proposal that pointed the three cysteines of the C(291)XXC(294)XXC(297) motif. Interestingly, we demonstrated that Cys291 and Cys294 form a disulfide bridge and are important for activity.  相似文献   

20.
The yeast transporter Acr3p is a low affinity As(III)/H+ and Sb(III)/H+ antiporter located in the plasma membrane. It has been shown for bacterial Acr3 proteins that just a single cysteine residue, which is located in the middle of the fourth transmembrane region and conserved in all members of the Acr3 family, is essential for As(III) transport activity. Here, we report a systematic mutational analysis of all nine cysteine residues present in the Saccharomyces cerevisiae Acr3p. We found that mutagenesis of highly conserved Cys151 resulted in a complete loss of metalloid transport function. In addition, lack of Cys90 and Cys169, which are conserved in eukaryotic members of Acr3 family, impaired Acr3p trafficking to the plasma membrane and greatly reduced As(III) efflux, respectively. Mutagenesis of five other cysteines in Acr3p resulted in moderate reduction of As(III) transport capacities and sorting perturbations. Our data suggest that interaction of As(III) with multiple thiol groups in the yeast Acr3p may facilitate As(III) translocation across the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号