首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

2.
Participation of different calcium-regulating mechanisms in the formation of intracellular calcium signals in rat primary sensory neurons was studied using two-wavelength fluorescent microscopy. Mitochondria were shown to be the most powerful intracellular calcium-regulating structures in the investigated neurons. These organelles were involved in the modulation of calcium signals induced either by Ca2+ entry from the extracellular medium or by Ca2+ release from endoplasmic reticulum (ER). Analysis of the mitochondrial calcium exchange showed that the efficiency of mitochondria depended on whether calcium entered the cytosol from ER or from the extracellular solution. Depletion of ER by activation of ryanodine-sensitive, inositol-3-phosphate-sensitive receptors of ER or by activation of the leak channels via the block of ATPases in ER activated the store-operated calcium entry from the extracellular medium to cytosol. The kinetics of the rising phase of these Ca2+ transients depended on the way of ER depletion. This allows suggesting the existence of different activation mechanisms for the studied signals. The block of the mitochondrial calcium uniporter resulted in a rapid recovery of the intracellular calcium concentration after the Ca2+ transient induced by store-operated calcium influx. We conclude that mitochondrial calcium uptake can prevent calcium-dependent inactivation of store-operated calcium channels.  相似文献   

3.
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.  相似文献   

4.
Calcium is one of the essential nutrients for growth and development of plants. It is an important component of various structures in cell wall and membranes. Besides some fundamental roles under normal condition, calcium functions as a major secondary-messenger molecule in plants under different developmental cues and various stress conditions including salinity stress. Also changes in cytosolic pH, pHcyt, either individually, or in coordination with changes in cytosolic Ca2+ concentration, [Ca2+]cyt, evoke a wide range of cellular functions in plants including signal transduction in plant-defense responses against stresses. It is believed that salinity stress, like other stresses, is perceived at cell membrane, either extra cellular or intracellular, which then triggers an intracellular-signaling cascade including the generation of secondary messenger molecules like Ca2+ and protons. The variety and complexity of Ca2+ and pH signaling result from the nature of the stresses as well as the tolerance level of the plant species against that specific stress. The nature of changes in [Ca2+]cyt concentration, in terms of amplitude, frequency and duration, is likely very important for decoding the specific downstream responses for salinity stress tolerance in planta. It has been observed that the signatures of [Ca2+]cyt and pH differ in various studies reported so far depending on the techniques used to measure them, and also depending on the plant organs where they are measured, such as root, shoot tissues or cells. This review describes the recent advances about the changes in [Ca2+]cyt and pHcyt at both cellular and whole-plant levels under salinity stress condition, and in various salinity-tolerant and -sensitive plant species.Key words: cytosolic calcium, ionic toxicity, osmotic stress, pH, salinity stress, salt tolerance, signaling  相似文献   

5.
Activity of voltage-gated potassium (Kv) channels controls membrane potential, which subsequently regulates cytoplasmic free calcium concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMCs). Acute hypoxia inhibits Kv channel function in PASMCs, inducing membrane depolarization and a rise in [Ca2+ ]cyt that triggers vasoconstriction. Prolonged hypoxia inhibits expression of Kv channels and reduces Kv channel currents in PASMCs. The consequent membrane depolarization raises [Ca2+]cyt, thus stimulating PASMC proliferation. The present review discusses recent evidence for the involvement of Kv channels in initiation of hypoxic pulmonary vasoconstriction and in chronic hypoxia-induced pulmonary hypertension.  相似文献   

6.
Ca2+ has been recognized as a key molecule for chondrocytes, however, the role and mechanism of spontaneous [Ca 2+] i signaling in cartilaginous extracellular matrix (ECM) metabolism regulation are unclear. Here we found that spontaneous Ca 2+ signal of in-situ porcine chondrocytes was [Ca 2+] o dependent, and mediated by [Ca 2+] i store release. T-type voltage-dependent calcium channel (T-VDCC) mediated [Ca 2+] o influx was associated with decreased cell viability and expression levels of ECM deposition genes. Further analysis revealed that chondrocytes expressed both inositol 1,4,5-trisphosphate receptor (InsP3R) and Orai isoforms. Inhibition of endoplasmic reticulum (ER) Ca 2+ release and store-operated calcium entry significantly abolished spontaneous [Ca 2+] i signaling of in-situ chondrocytes. Moreover, blocking ER Ca 2+ release with InsP3R inhibitors significantly upregulated ECM degradation enzymes production, and was accompanied by decreased proteoglycan and collagen type II intensity. Taken together, our data provided evidence that spontaneous [Ca 2+] i signaling of in-situ porcine chondrocytes was tightly regulated by [Ca 2+] o influx, InsP3Rs mediated [Ca 2+] i store release, and Orais mediated calcium release-activated calcium channels activation. Both T-VDCC mediated [Ca 2+] o influx and InsP3Rs mediated ER Ca 2+ release were found crucial to cartilaginous ECM metabolism through distinct regulatory mechanisms.  相似文献   

7.
Abstract: The effects of K+ depolarization and of stimulation by veratridine on apparent cytosolic free Ca2+ ([Ca2+]cyt) and net Ca2+ accumulation were measured in isolated rat brain presynaptic nerve terminals (synaptosomes). [Ca2+]cyt was determined with fura-2, and Ca2+ accumulation was measured with tracer 45Ca. [Ca2+]cyt was ~ 325 nM in synaptosomes incubated in the normal physiological salt solution under resting conditions. When [K+]0, was increased from the normal 5 mM to 30 or 50 mM, 45Ca uptake and [Ca2+]cyt both increased within 1 s. Both increases were directly related to [Ca2+]0 for [Ca2+]0= 0.02–1.2 mM; however, the increase in 45Ca uptake greatly exceeded the increase in [Ca2+]cyt. With small Ca2+ loads ≤100 μmol/L of cell water, equivalent to the Ca2+ entry during a train of ≤60 impulses), the 45Ca uptake exceeded the increase in [Ca2+]cyt by a factor of nearly 1,000. This indicates that ~99.9% of the entering Ca2+ was buffered and/or sequestered within ~ 1 s. With larger Ca2+ loads, a larger fraction of the entering Ca2+ was buffered; ~99.97% of the load was buffered with loads of 250–425 μmol/L of cell water. The ratio between the total Ca2+ entry and the increase in [Ca2+]cyt, the “calcium buffer ratio”β, was therefore ~ 3,500:1. This ratio was somewhat lower than the ratio of total intraterminal calcium: [Ca2+]cyt, which ranged between ~7,300:1 and 12,800:1. When the synaptosomes were activated with 10 μM veratridine ([Ca2+]0= 0.2–0.6 mM), 45Ca influx and [Ca2+]cyt increased progressively for ~10 s (β= 2,700:13,050:1) and then leveled off. Application of 10 μM tetrodotoxin before the introduction of veratridine prevented the increases in 45Ca influx and [Ca2+]cyt. Application of 10 μM tetrodotoxin after 5–10 s of exposure to veratridine caused both the [Ca2+]cyt and the veratridine-stimulated 45Ca within the terminals to decline, thereby demonstrating that the Ca2+ loading is reversible in the presence of extracellular Ca2+. These data show that synaptosomes are capable of buffering and metabolizing Ca2+ in a manner expected for intact neurons.  相似文献   

8.
Calcium transients in single, human gingival fibroblasts were studied after mechanical stretching of flexible culture substrates. A model system was developed to reproducibly stretch and rapidly (< 1 sec) refocus cells in the same focal plane so that changes in the concentration of free intracellular calcium ions ([Ca2+]i) were monitored without delay. Attached cells were grown on flexible bottom Petriperm dishes, loaded with fura-2/AM, and stretched by 1% or 2.8% of substrate area. The stretch caused no significant cell detachment or membrane lesions. A 1% stretch induced no calcium response, but a 2.8% stretch stimulated an initial calcium transient and the subsequent generation of [Ca2+]i oscillations of up to 2,000 sec. At 1% stretch, there was no calcium response. Cell shape and plating time were important determinants in the calcium response to mechanical stimulation: the responder cells were small and round without long processes. Major calcium transients were inhibited completely by 5 mM EGTA or by 10 μM gadolinium ions, by 50 μM nifedipine, or 250 μM verapamil, suggesting an influx of calcium through stretch-activated (SA) channels and L-type calcium channels. Depolarization by high KCl (144 mM) in the extracellular medium enhanced the amplitude of calcium transients by 54%. Calcium oscillations were not inhibited by preincubation with thapsigargin, caffeine, cholera toxin, staurosporine or 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), indicating that IP3 sensitive pools, IP3 insensitive pools, G5α subunits, and protein kinase C, respectively, were not involved in the generation of calcium oscillations. Pretreatment with genistein, a specific tyrosine kinase inhibitor or cytochalasin D, an inhibitor of actin polymerization, or pertussis toxin, an inhibitor of G and G subunits, completely abolished calcium transients and oscillations. These results indicate that Ca2+ flux due to mechanical stretching is likely mediated through SA ion channe s and is dependent on tyrosine kinases, pertussis toxin-sensitive subunits of G-proteins, and actin filaments. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The effect of the membrane-permeant calcium chelator 1,2-bis-(2-aminophenoxy)ethane-N,N,N′,N−'tetraacetic acid tetra(acetoxymethyl) ester (BAPTA/AM) on ionomycin-induced cellular calcium overload was studied in single differentiated NH15-CA2 neuroblastoma x glioma hybrid cells. To monitor [Ca2+]i, we used the fluorescent indicator Fura-2. Preincubation of the cells with 3 μM BAPTA/AM reduced the number of cells showing deregulation of [Ca2+]i during ionomycin-induced calcium influx. The calcium transients elicited by application of KCI were also severely affected by the chelator. These transients, although varying from cell to cell in shape, amplitude and duration, are well reproducible in individual cells. After incubation of cells for 1 h with 0.3–30 μM BAPTA/AM the time course of these cellular transients was markedly slowed. At 1 μM BAPTA/AM, the time constant of decline of [Ca2+]i was increased by a factor of 4.1 ± 2.4 (n = 14) and the amplitude was reduced to about 50%. With 30 μM BAPTA/AM, the K+-induced calcium transients were almost completely inhibited. We conclude that intracellularly loaded calcium chelators may be used for the prevention of [Ca2+]i-induced cell damage, however, at the expense of a disturbed calcium signalling.  相似文献   

10.
Ca2+ is a key player in plant cell responses to biotic and abiotic stress. Owing to the central role of cytosolic Ca2+ ([Ca2+]cyt) during early signaling and the need for precise determination of [Ca2+]cyt variations, we used a Cameleon YC 3.6 reporter protein expressed in Arabidopsis thaliana to quantify [Ca2+]cyt variations upon leaf mechanical damage (MD), herbivory by 3rd and 5th instar larvae of Spodoptera littoralis and S. littoralis oral secretions (OS) applied to MD. YC 3.6 allowed a clear distinction between MD and herbivory and discriminated between the two larvae instars. To our knowledge this is the first report of quantitative [Ca2+]cyt determination upon herbivory using a Cameleon calcium sensor.  相似文献   

11.
《Journal of biomechanics》2014,47(16):3903-3908
Intracellular calcium transient ([Ca2+]i transient) induced by fluid shear stress (FSS) plays an important role in osteoblastic mechanotransduction. Changes of membrane potential usually affect [Ca2+]i level. Here, we sought to determine whether there was a relationship between membrane potential and FSS-induced [Ca2+]i transient in osteoblasts. Fluorescent dyes DiBAC4(3) and fura-2 AM were respectively used to detect membrane potential and [Ca2+]i. Our results showed that FSS firstly induced depolarization of membrane potential and then a transient rising of [Ca2+]i in osteoblasts. There was a same threshold for FSS to induce depolarization of membrane potential and [Ca2+]i transients. Replacing extracellular Na+ with tetraethylammonium or blocking stretch-activated channels (SACs) with gadolinium both effectively inhibited FSS-induced membrane depolarization and [Ca2+]i transients. However, voltage-activated K+ channel inhibitor, 4-Aminopyridine, did not affect these responses. Removing extracellular Ca2+ or blocking of L-type voltage-sensitive Ca2+ channels (L-VSCCs) with nifedipine inhibited FSS-induced [Ca2+]i transients in osteoblasts too. Quantifying membrane potential with patch clamp showed that the resting potential of osteoblasts was −43.3 mV and the depolarization induced by FSS was about 44 mV. Voltage clamp indicated that this depolarization was enough to activated L-VSCCs in osteoblasts. These results suggested a time line of Ca2+ mobilization wherein FSS activated SACs to promote Na+ entry to depolarize membrane that, in turn, activated L-VSCCs and Ca2+ influx though L-VSCCs switched on [Ca2+]i response in osteoblasts.  相似文献   

12.
Cytosolic Ca2+ concentration ([Ca2+]i) is reduced in cultured neurons undergoing neuronal death caused by inhibitors of the ubiquitin proteasome system. Activation of calcium entry via voltage‐gated Ca2+ channels restores cytosolic Ca2+ levels and reduces this neuronal death ( Snider et al. 2002 ). We now show that this reduction in [Ca2+]i is transient and occurs early in the cell death process, before activation of caspase 3. Agents that increase Ca2+ influx such as activation of voltage‐gated Ca2+ channels or stimulation of Ca2+ entry via the plasma membrane Na–Ca exchanger attenuate neuronal death only if applied early in the cell death process. Cultures treated with proteasome inhibitors had reduced current density for voltage‐gated Ca2+ channels and a less robust increase in [Ca2+]i after depolarization. Levels of endoplasmic reticulum Ca2+ were reduced and capacitative Ca2+ entry was impaired early in the cell death process. Mitochondrial Ca2+ was slightly increased. Preventing the transfer of Ca2+ from mitochondria to cytosol increased neuronal vulnerability to this death while blockade of mitochondrial Ca2+ uptake via the uniporter had no effect. Programmed cell death induced by proteasome inhibition may be caused in part by an early reduction in cytosolic and endoplasmic reticulum Ca2+, possibly mediated by dysfunction of voltage‐gated Ca2+ channels. These findings may have implications for the treatment of disorders associated with protein misfolding in which proteasome impairment and programmed cell death may occur.  相似文献   

13.
Using indo-1- and fura-2-based microfluorometry for measuring the cytoplasmic free calcium concentration ([Ca2+] in ), the properties of caffeine-induced Ca2+ release from internal stores were studied in rat cultured central and peripheral neurons, including dorsal root ganglion (DRG) neurons, neurons from then. cuneatus, CA1 and CA3 hippocampal regions, and pyramidal neocortical neurons. Under resting conditions, the Ca2+ content of internal stores in DRG neurons was high enough to produce caffeine-triggered [Ca2+] in transients. Prolonged exposure of caffeine depleted the caffeine-sensitive stores of releasable Ca2+; the degree of this depletion depended on caffeine concentration. The depletion of the caffeine-sensitive internal stores to some extent was linked to calcium extrusion via La3+-sensitive plasmalemmal Ca2+-ATPases. Caffeine-induced Ca2+ release deprived internal stores in DRG neurons, but they refilled themselves spontaneously within 10 min. Pharmacological manipulation with caffeine-sensitive stores interferred with the depolarization-induced [Ca2+] in transients. In the presence of low caffeine concentration (0.5–1.0 mM) in the extracellular solution, the rate of rise of the depolarization-triggered [Ca2+] in transients significantly increased (by a factor of 2.15 ± 0.29) suggesting the occurrence of Ca2+-induced Ca2+ release. When the caffeine-sensitive stores were emptied by prolonged application of caffeine, the amplitude and rate of rise of the depolarization-induced [Ca2+] in transients decreased. These findings suggest the involvement of internal caffeine-sensitive calcium stores in generation of calcium signal in sensory neurons. In contrast, in all types of central neurons tested the resting Ca2+ content of internal stores was low, but the stores could be charged by transmembrane Ca2+ entry through voltage-operated calcium channels. After charging, the stores in central neurons spontaneously lost releasable calcium content and within 10 min they became completely empty again. We suggest that internal Ca2+ stores in peripheral and central neurons, although having similar pharmacological characteristics, handle Ca2+ ions in a different manner. Calcium stores in sensory neurons are continuously filled by releasable calcium and after discharging they can be spontaneously refilled, whereas in central neurons internal calcium stores can be charged by releasable calcium only transiently. Caffeine-evoked [Ca2+] in transients in all types of neurons were effectively blocked by 10 mM ryanodine, 5 mM procaine, 10 mM dantrolene, or 0.5 mM Ba2+, thus sharing the basic properties of the Ca2+-induced Ca2+ release from endoplasmic reticulum.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 16–25, January–February, 1994.  相似文献   

14.
Hydrogen peroxide is the most stable of the reactive oxygen species (ROS) and is a regulator of development, immunity and adaptation to stress. It frequently acts by elevating cytosolic free Ca2+ ([Ca2+]cyt) as a second messenger, with activation of plasma membrane Ca2+‐permeable influx channels as a fundamental part of this process. At the genetic level, to date only the Ca2+‐permeable Stelar K+ Outward Rectifier (SKOR) channel has been identified as being responsive to hydrogen peroxide. We show here that the ROS‐regulated Ca2+ transport protein Annexin 1 in Arabidopsis thaliana (AtANN1) is involved in regulating the root epidermal [Ca2+]cyt response to stress levels of extracellular hydrogen peroxide. Peroxide‐stimulated [Ca2+]cyt elevation (determined using aequorin luminometry) was aberrant in roots and root epidermal protoplasts of the Atann1 knockout mutant. Similarly, peroxide‐stimulated net Ca2+ influx and K+ efflux were aberrant in Atann1 root mature epidermis, determined using extracellular vibrating ion‐selective microelectrodes. Peroxide induction of GSTU1 (Glutathione‐S‐Transferase1 Tau 1), which is known to be [Ca2+]cyt‐dependent was impaired in mutant roots, consistent with a lesion in signalling. Expression of AtANN1 in roots was suppressed by peroxide, consistent with the need to restrict further Ca2+ influx. Differential regulation of annexin expression was evident, with AtANN2 down‐regulation but up‐regulation of AtANN3 and AtANN4. Overall the results point to involvement of AtANN1 in shaping the root peroxide‐induced [Ca2+]cyt signature and downstream signalling.  相似文献   

15.
Ca2+ signaling is essential for bone metabolism. Fluid shear stress (FSS), which can induce a rapid release of calcium from endoplasmic reticulum (ER) to produce calcium transients, plays a significant role in osteoblast proliferation and differentiation. However, it is still unclear of how calcium transients induced by FSS activating a number of downstream signals which subsequently regulate cell functions. In this study, we performed a group of Ca2+ transients models, which were induced by FSS to investigate the effects of different magnitudes of Ca2+ transients in osteoblast proliferation. Further, we performed a global proteomic profile of MC3T3-E1 cells in different Ca2+ transients models stimulated by FSS. GO enrichment and KEGG pathway analysis revealed that the TCA cycle was activated in the proliferating process. The activation of TCA needed mitochondrial Ca2+ uptake which were influenced by the amplitude of Ca2+ transients induced by FSS. Our work elucidate that osteoblast proliferation induced by FSS was related to the magnitude of calcium transients, which further activated energetic metabolism signaling pathway. This work revealed further understanding the mechanism of osteoblast proliferation induced by mechanic loading and help us to design new methods for osteoporosis therapy.  相似文献   

16.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

17.
A theoretical model of calcium signaling is presented that simulates oscillations of cytoplasmic calcium concentration ([Ca2+]cyt) in stomatal guard cells under the action of abscisic acid. The model is based on the kinetics of inositol 1,4,5-trisphosphate-sensitive calcium channels of endoplasmic reticulum and cyclic ADP-ribose-sensitive calcium channels of the tonoplast. The operation of two energy-dependent pumps—the Ca2+-ATPase of the endoplasmic reticulum and the Ca2+/H+ antiporter of the tonoplast—is also included in the model. It is shown that the removal of excessive Ca2+ from the cytoplasm by the tonoplast Ca2+/H+ antiporter is the main factor accounting for generation of [Ca2+]cyt oscillations at a wide range of ABA concentrations (0.01–1 M). The long period of [Ca2+]cyt oscillations in plant cells is explained by a slow release from inhibition of inositol 1,4,5-trisphosphate-gated calcium channels.  相似文献   

18.
In the cochlea, cell damage triggers intercellular Ca2+ waves that propagate through the glial-like supporting cells that surround receptor hair cells. These Ca2+ waves are thought to convey information about sensory hair cell-damage to the surrounding supporting cells within the cochlear epithelium. Mitochondria are key regulators of cytoplasmic Ca2+ concentration ([Ca2+]cyt), and yet little is known about their role during the propagation of such intercellular Ca2+ signalling. Using neonatal rat cochlear explants and fluorescence imaging techniques, we explore how mitochondria modulate supporting cell [Ca2+]cyt signals that are triggered by ATP or by hair cell damage. ATP application (0.1–50 μM) caused a dose dependent increase in [Ca2+]cyt which was accompanied by an increase in mitochondrial calcium. Blocking mitochondrial Ca2+ uptake by dissipating the mitochondrial membrane potential using CCCP and oligomycin or using Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, enhanced the peak amplitude and duration of ATP-induced [Ca2+]cyt transients. In the presence of Ru360, the mean propagation velocity, amplitude and extent of spread of damage-induced intercellular Ca2+ waves was significantly increased. Thus, mitochondria function as spatial Ca2+ buffers during agonist-evoked [Ca2+]cyt signalling in cochlear supporting cells and play a significant role in regulating the spatio-temporal properties of intercellular Ca2+ waves.  相似文献   

19.
The cytoplasmic Ca2+ concentration ([Ca2+]cyt) in resting cells in an equilibrium between several influx and efflux mechanisms. Here we address the question of whether capacitative Ca2+ entry to some extent is active at resting conditions and therefore is part of processes that guarantee a constant [Ca2+]cyt. We measured changes of [Ca2+]cyt in RBL-1 cells with fluorometric techniques. An increase of the extracellular [Ca2+] from 1.3 mM to 5 mM induced an incrase in [Ca2+]cyt from 105±10 nM to 145±8.5 nM. This increase could be inhibited by 10 μM Gd3+, 10 μM La3+ or 50 μM 2-aminoethoxydiphenyl borate, blockers of capacitative Ca2+ entry. Application of those blockers to a resting cell in a standard extracellular solution (1.3 mM Ca2+) resulted in a decrease of [Ca2+]cyt from 105±10 nM to 88.5±10 nM with La3+, from 103±12 to 89±12 nM with Gd3+ and from 102±12 nM to 89.5±5 nM with 2-aminoethoxydiphenyl borate. From these data, we conclude that capacitative Ca2+ entry beside its function in Ca2+ signaling contributes to the regulation of resting [Ca2+]cyt.  相似文献   

20.
The transient receptor potential (TRP) channels are important membrane sensors, responding to thermal, chemical, osmotic, or mechanical stimuli by activation of calcium and sodium fluxes. In this study, three distinct TRP channels were detected and their role established in mediating cytosolic free calcium concentration ([Ca2+]cyt) response in tumor-derived SW982 synoviocytes and primary cultures of human synovial cells from patients with inflammatory arthropathies. As shown by fura-2 ratio measurements while cells were incubated in a temperature-regulated chamber, significant [Ca2+]cyt elevation was elicited by rapid changes in bath temperature, application of TRPV1 receptor agonists capsaicin and resiniferatoxin, or a cold receptor stimulator, icilin. Temperature thresholds for calcium response were determined to be 12 ± 1°C for cold and 28 ± 2°C for heat activation. Temperature increases or decreases beyond these thresholds resulted in a significant rise in the magnitude of [Ca2+]cyt spikes. Observed changes in [Ca2+]cyt were completely abolished in calcium-free medium and thus resulted from direct calcium entry through TRP channels rather then by activation of voltage-dependent calcium channels. Two heat sensitive channels, TRPV1 and TRPV4, and a cold-sensitive channel, TRPA1, were detected by RT-PCR. Minimal mRNA for TRPV3 or TRPM8 was amplified. The RT-PCR results support the data obtained with the [Ca2+]cyt measurements. We propose that the TRP channels are functionally expressed in human synoviocytes and may play a critical role in adaptive or pathological changes in articular surfaces during arthritic inflammation. transient receptor potential channels; vanilloid receptors; arthritis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号