首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple assay formats have been developed for the pharmacological characterization of G-protein-coupled receptors (GPCRs) and for screening orphan receptors. However, the increased pace of target identification and the rapid expansion of compound libraries present the need to develop novel assay formats capable of screening multiple GPCRs simultaneously. To address this need, the authors have developed a generic dual-reporter gene assay that can detect ligand activity at 2 GPCRs within the same assay. Two stable HEK293 cell lines were generated expressing either a firefly (Photinus) luciferase gene under the control of multiple cAMP-response elements (CREs) or a Renilla luciferase gene under the control of multiple 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs). Coseeded reporter cells were used to assess ligand binding activity at both Galphas-and Galphaq-coupled receptors. By selectively coexpressing receptors with a chimeric G-protein, agonist activity was assessed at Galphai/o-coupled receptors in combination with either Galphas-or Galphaq-coupled receptors. The dual-reporter gene assay was shown to be capable of simultaneously performing duplexed screens for a variety of agonist and/or antagonist combinations. The data generated from the duplexed reporter assays were pharmacologically relevant, and Z' factor analysis indicated the suitability of both agonist and antagonist screens for use in high-throughput screening.  相似文献   

2.
Gaussia luciferase (Gluc) is a secreted reporter, and its expression in living animals can be assessed by in vivo bioluminescence imaging (BLI) or blood assays. We characterized Gluc as an in vivo reporter in comparison with firefly luciferase (Fluc). Mice were inoculated subcutaneously with tumor cells expressing both Fluc and Gluc and underwent Fluc BLI, Gluc BLI, blood assays of Gluc activity, and caliper measurement. In Gluc BLI, the signal from the tumor peaked immediately and then decreased rapidly. In the longitudinal monitoring, all measures indicated an increase in tumor burden early after cell inoculation. However, the increase reached plateaus in Gluc BLI and Fluc BLI despite a continuous increase in the caliper measurement and Gluc blood assay. Significant correlations were found between the measures, and the correlation between the blood signal and caliper volume was especially high. Gluc allows tumor monitoring in mice and should be applicable to dual-reporter assessment in combination with Fluc. The Gluc blood assay appears to provide a reliable indicator of viable tumor burden, and the combination of a blood assay and in vivo BLI using Gluc should be promising for quantifying and localizing the tumors.  相似文献   

3.
Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, research on exosome‐ECM interactions is limited. Here, we investigate whether the exosome‐associated lysyl oxidase family member lysyl oxidase‐like 2 (LOXL2) is involved in ECM remodelling. We found that LOXL2 is present on the exterior of endothelial cell (EC)‐derived exosomes, placing it in direct vicinity of the ECM. It is up‐regulated twofold in EC‐derived exosomes cultured under hypoxic conditions. Intact exosomes from hypoxic EC and LOXL2 overexpressing EC show increased activity in a fluorometric lysyl oxidase enzymatic activity assay as well as in a collagen gel contraction assay. Concordantly, knockdown of LOXL2 in exosome‐producing EC in both normal and hypoxic conditions reduces activity of exosomes in both assays. Our findings show for the first time that ECM crosslinking by EC‐derived exosomes is mediated by LOXL2 under the regulation of hypoxia, and implicate a role for exosomes in hypoxia‐regulated focal ECM remodelling, a key process in both fibrosis and wound healing.  相似文献   

4.
We have generated a set of dual-reporter human cell lines and devised a chase protocol to quantify proteasomal degradation of a ubiquitin fusion degradation (UFD) substrate, a ubiquitin ligase CRL2(VHL) substrate, and a ubiquitin-independent substrate. Well characterized inhibitors that target different aspects of the ubiquitin-proteasome system can be distinguished by their distinctive patterns of substrate stabilization, enabling assignment of test compounds as inhibitors of the proteasome, ubiquitin chain formation or perception, CRL activity, or the UFD-p97 pathway. We confirmed that degradation of the UFD but not the CRL2(VHL) or ubiquitin-independent substrates depends on p97 activity. We optimized our suite of assays to establish conditions suitable for high-throughput screening and then validated their performance by screening against 160 cell-permeable protein kinase inhibitors. This screen identified Syk inhibitor III as an irreversible p97/vasolin containing protein inhibitor (IC(50) = 1.7 μM) that acts through Cys-522 within the D2 ATPase domain. Our work establishes a high-throughput screening-compatible pipeline for identification and classification of small molecules, cDNAs, or siRNAs that target components of the ubiquitin-proteasome system.  相似文献   

5.
6.
Astrocytoma/glioblastoma is the most common malignant form of brain cancer and is often unresponsive to current pharmacological therapies and surgical interventions. Despite several potential therapeutic agents against astrocytoma and glioblastoma, there are currently no effective therapies for astrocytoma, creating a great need for the identification of effective antitumor agents. The authors have developed a novel dual-reporter system in Trp53/Nf1-null astrocytoma cells to simultaneously and rapidly assay cell viability and cell cycle progression as evidenced by activity of the human E2F1 promoter in vitro. The dual-reporter high-throughput assay was used to screen experimental therapeutics for activity in Trp53/Nf1-null astrocytoma. Several compounds were identified demonstrating selectivity for astrocytoma over primary astrocytes. The dual-reporter system described here may be a valuable tool for identifying potential antitumor treatments that specifically target astrocytoma.  相似文献   

7.
8.
9.
Firefly luciferase and Escherichia coli beta-galactosidase chemiluminescent reporter gene assays are rapid and sensitive means of detecting reporter enzyme activities in cell lysates of both eukaryotic and prokaryotic systems. In these assays, expression vectors containing the luciferase or beta-galactosidase genes are transferred to cells in culture or animal tissues in vivo. Crude cell or organ lysates are then prepared and submitted to enzyme assays. The level of enzyme activity is proportional to the efficiency of gene delivery and expression. When used with modified substrates that emit light when cleaved by the appropriate enzyme, luciferase and beta-galactosidase activity can be detected luminometrically. Attempts to apply these assays to cell lysates contaminated with blood, as from any whole organ lysate, have had questionable results thus far because of light absorption by hemoglobin in the ranges of light emission by both of these assays. We have made several adjustments to standard chemiluminescent reporter gene assay protocols to minimize errors in quantitation contributed by hemoglobin. To this end, we have developed a method for quantitating the protein due to blood and due to the organ itself in a blood-contaminated organ lysate. We have also found that the use of a colorimetric protein assay that is unaffected by hemoglobin absorbance is preferred for protein quantitation. In conclusion, luciferase and beta-galactosidase assays can be applied to blood-contaminated organ lysates; however, the luciferase assay proved to be superior due to minimal endogenous activity and lower absorption by hemoglobin of light emitted by the enzyme product.  相似文献   

10.
11.
12.
Reporter gene techniques have been applied toward studying the physiologic phenomena associated with tumor hypoxia, a negative prognostic indicator. The purpose of this study was to assess the potential adverse effects of hypoxic conditions on the effectiveness of four commonly used reporter genes: Renilla luciferase, monomeric red fluorescent protein, thymidine kinase, and lacZ. Tumor-forming A375 cells expressing a trifusion reporter consisting of Renilla luciferase, monomeric red fluorescent protein, and thymidine kinase were subjected to decreasing oxygen tensions and assayed for reporter expression and activity. A375 cells expressing beta-galactosidase were similarly exposed to hypoxia, with activity of the reporter monitored by cleavage of the fluorescent substrate 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one)-beta-galactoside (DDAOG). Generation of signal in in vivo tumor models expressing bioluminescent or beta-galactosidase reporters were also examined over the course of hypoxic stresses, either by tumor clamping or the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Our findings indicate that bioluminescent and fluorescent reporter activity are decreased under hypoxia despite minimal variations in protein production, whereas beta-galactosidase reporter activity per unit protein was unchanged. These results demonstrate that combining beta-galactosidase with the DDAOG optical probe may be a robust reporter system for the in vivo study of tumor hypoxia.  相似文献   

13.
Despite their fundamental importance, the dynamics of signaling pathways in living cells remain challenging to study, due to a lack of non-invasive tools for temporal assessment of signal transduction in desired cell models. Here we report a dual-reporter strategy that enables researchers to monitor signal transduction in mammalian cells in real-time, both temporally and quantitatively. This is achieved by co-expressing green fluorescent protein and firefly luciferase in response to signaling stimuli. To display the versatility of this approach, we constructed and assessed eight unique signaling pathway reporters. We further validated the system by establishing stable NF-κB pathway reporter cell lines. Using these stable cell lines, we monitored the activity of NF-κB-mediated inflammatory pathway in real-time, both visually and quantitatively. Live visualization has the power to reveal individual cell responses and is compatible with single cell analysis, In addition, we provide evidence that this system is readily amenable to a high-throughput format. Together, our findings demonstrate the potential of the dual reporter system, which significantly improves the capacity to study signal transduction pathways in mammalian cells.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号