首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are essential components of biomembranes, particularly in neural tissues. Endogenous synthesis of ARA, EPA and DHA occurs from precursor dietary essential fatty acids such as linoleic and α-linolenic acid through elongation and Δ5 and Δ6 desaturations. With respect to desaturation activities some noteworthy differences have been noted in vertebrate classes. In mammals, the Δ5 activity is allocated to the Fads1 gene, while Fads2 is a Δ6 desaturase. In contrast, teleosts show distinct combinations of desaturase activities (e.g. bifunctional or separate Δ5 and Δ6 desaturases) apparently allocated to Fads2-type genes. To determine the timing of Fads1-Δ5 and Fads2-Δ6 evolution in vertebrates we used a combination of comparative and functional genomics with the analysis of key phylogenetic species. Our data show that Fads1 and Fads2 genes with Δ5 and Δ6 activities respectively, evolved before gnathostome radiation, since the catshark Scyliorhinus canicula has functional orthologues of both gene families. Consequently, the loss of Fads1 in teleosts is a secondary episode, while the existence of Δ5 activities in the same group most likely occurred through independent mutations into Fads2 type genes. Unexpectedly, we also establish that events of Fads1 gene expansion have taken place in birds and reptiles. Finally, a fourth Fads gene (Fads4) was found with an exclusive occurrence in mammalian genomes. Our findings enlighten the history of a crucially important gene family in vertebrate fatty acid metabolism and physiology and provide an explanation of how observed lineage-specific gene duplications, losses and diversifications might be linked to habitat-specific food web structures in different environments and over geological timescales.  相似文献   

4.
In 2000, Marquardt et al. (A. Marquardt, H. Stöhr, K. White, and B. H. F. Weber. 2000. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics. 66: 176–183.) described the genomic structure of the fatty acid desaturase (FADS) cluster in humans. This cluster includes the FADS1 and FADS2 genes encoding, respectively, for the Δ5- and Δ6-desaturases involved in polyunsaturated fatty acid biosynthesis. A third gene, named FADS3, has recently been identified but no functional role has yet been attributed to the putative FADS3 protein. In this study, we investigated the FADS3 occurrence in rat tissues by using two specific polyclonal antibodies directed against the N-terminal and C-terminal ends of rat FADS3. Our results showed three potential protein isoforms of FADS3 (75 kDa, 51 kDa, and 37 kDa) present in a tissue-dependent manner. The occurrence of these FADS3 isoforms did not depend on the mRNA level determined by real-time PCR. In parallel, mouse tissues were also tested and showed the same three FADS3 isoforms but with a different tissue distribution. Finally, we reported the existence of FADS3 in human cells and tissues but different new isoforms were identified. To conclude, we showed in this study that FADS3 does exist under multiple protein isoforms depending on the mammalian tissues. These results will help further investigations to determine the physiological function of FADS3.  相似文献   

5.
Branched chain fatty acids (BCFA) and linear chain/normal odd chain fatty acids (n-OCFA) are major fatty acids in human skin lipids, especially sebaceous gland (SG) wax esters. Skin lipids contain variable amounts of monounsaturated BCFA and n-OCFA, in some reports exceeding over 20% of total fatty acids. Fatty acid desaturase 2 (FADS2) codes for a multifunctional enzyme that catalyzes Δ4-, Δ6- and Δ8-desaturation towards ten unsaturated fatty acids but only one saturate, palmitic acid, converting it to 16:1n-10; FADS2 is not active towards 14:0 or 18:0. Here we test the hypothesis that FADS2 also operates on BCFA and n-OCFA. MCF-7 cancer cells stably expressing FADS1 or FADS2 along with empty vector control cells were incubated with anteiso-15:0, iso-16:0, iso-17:0, anteiso-17:0, iso-18:0, or n-17:0. BCFA were Δ6-desaturated by FADS2 as follows: iso-16:0 → iso-6Z-16:1, iso-17:0 → iso-6Z-17:1, anteiso-17:0 → anteiso-6Z-17:1 and iso-18:0 → iso-6Z-18:1. anteiso-15:0 was not desaturated in either FADS1 or FADS2 cells. n-17:0 was converted to both n-6Z-17:1 by FADS2 Δ6-desaturation and n-9Z-17:1 by SCD Δ9-desaturation. We thus establish novel FADS2-coded enzymatic activity towards BCFA and n-OCFA, expanding the number of known FADS2 saturated fatty acid substrates from one to six. Because of the importance of FADS2 in human skin, our results imply that dysfunction in activity of sebaceous FADS2 may play a role in skin abnormalities associated with skin lipids.  相似文献   

6.
Four positional isomers of Thiastearate (TS) and Isoxyl (Thiocarlide) were assayed as fatty acid desaturase inhibitors in Trypanosoma cruzi epimastigotes. 9-TS did not exert a significant effect on growth of T. cruzi, nor on the fatty acid profile of the parasite cells. One hundred micromolars of 10-TS totally inhibited growth, with an effective concentration for 50% growth inhibition (EC50) of 3.0 ± 0.2 μM. Growth inhibition was reverted by supplementing the culture media with oleate. The fatty acid profile of treated cells revealed that conversion of stearate to oleate and palmitate to palmitoleate were drastically reduced and, as a consequence, the total level of unsaturated fatty acids decreased from 60% to 32%. Isoxyl, a known inhibitor of stearoyl-CoA Δ9 desaturase in mycobacteria, had similar effects on T. cruzi growth (EC50 2.0 ± 0.3 μM) and fatty acid content, indicating that Δ9 desaturase was the target of both drugs. 12- and 13-TS were inhibitors of growth with EC50 values of 50 ± 2 and 10 ± 3 μM, respectively, but oleate or linoleate were unable to revert the effect. Both drugs increased the percentage of oleate and palmitate in the cell membrane and drastically reduced the content of linoleate from 38% to 16% and 12%, respectively, which is in agreement with a specific inhibition of oleate Δ12 desaturase. The absence of corresponding enzyme activity in mammalian cells and the significant structural differences between trypanosome and mammalian Δ9 desaturases, together with our results, highlight these enzymes as promising targets for selective chemotherapeutic intervention.  相似文献   

7.
In Western countries the dietary guidance emphasizes the need to decrease the intake of saturated fatty acids and to replace them with polyunsaturated fatty acids (PUFA), particularly long chain n-3 PUFA (LC-PUFA). The production of poultry meat having a lower fat content and healthier fatty acid (FA) profile is a hot topic for the poultry industry, and the possibility to identify genotypes able to produce meat with a higher LC-PUFA content deserves attention. The aims of the present study were to evidence in chicken (i) a genotype-related different expression of the desaturating enzymes delta-6 (Δ6, EC 1.14.99.25), delta-5 (Δ5, EC 1.14.19.) and delta-9 (Δ9, EC 1.14.19.1); (ii) the impact of the hypothesized different expression on the meat FA composition; (iii) the distribution of desaturase products in the different lipid classes. Slow (SG), medium (MG) and fast (FG) growing chickens fed the same diet were evaluated either for the relative expression of FADS1, FADS2 and SCD1 genes in liver (by q-PCR), or for the FA composition of breast meat. MG and particularly SG birds showed a greater expression of FADS2 and FADS1 genes, a higher Δ6 and Δ5 activity (estimated using desaturase indices), and consequently a higher LC-PUFA content in the breast meat than FG birds. The relationship between genotype and desaturating ability was demonstrated, with a significant impact on the PUFA content of breast meat. Due to the high consumption rate of avian meat, the identification of the best genotypes for meat production could represent an important goal not only for the food industry, but also for the improvement of human nutrition.  相似文献   

8.
9.
10.
The benefits of dietary fish and fish oil are derived from n-3 long-chain polyunsaturated fatty acids (LC-PUFA) that have beneficial effects in a range of human diseases and pathologies such as cardiovascular and other inflammatory disorders, neural development and neurological pathologies. The precursor of n-3 LC-PUFA, 18:3n-3 does not have the same beneficial effects prompting interest in the pathways of endogenous synthesis of LC-PUFA in vertebrates. The LC-PUFA biosynthesis pathway classically involves Δ6 and Δ5 fatty acyl desaturases (Fad), but it was recently shown that Δ6 Fad in mammals also displayed Δ8 activity demonstrating a possible alternative "Δ8-pathway" for the synthesis of LC-PUFA. Our primary hypothesis was that Δ8 desaturase activity would be a common feature of vertebrate Δ6 Fads, and so the aim of the present study was to determine the ability of teleostei Fads for Δ8 desaturation activity. To this end, cDNAs for Fads from a range of freshwater, diadromous and marine teleost fish species were assayed for Δ8 activity in the heterologous yeast expression system. In summary, the present study has demonstrated that Δ8 desaturation activity was also a characteristic of fish orthologs, although the activity varied notably between freshwater/diadromous and marine fish species, with the latter possessing Fads2-like proteins with Δ8 activity far higher than mammalian FADS2. The data showed that, generally, the fish Fad are technically υ-3 desaturases, with new double bonds introduced 3C beyond a pre-existing double bond. However, the ability of zebrafish and rabbitfish Fads, previously characterised as Δ6/Δ5 bifunctional desaturases, to introduce non-methylene interrupted double bonds in 20:3n-3 and 20:2n-6 suggested that a novel combination of regioselectivity modes operates within these enzymes.  相似文献   

11.
The Δ6 desaturase, encoded by FADS2, plays a crucial role in omega-3 and omega-6 fatty acid synthesis. These fatty acids are essential components of the central nervous system, and they act as precursors for eicosanoid signaling molecules and as direct modulators of gene expression. The polypyrimidine tract binding protein (PTB or hnRNP I) is a splicing factor that regulates alternative pre-mRNA splicing. Here, PTB is shown to bind an exonic splicing silencer element and repress alternative splicing of FADS2 into FADS2 AT1. PTB and FADS2AT1 were inversely correlated in neonatal baboon tissues, implicating PTB as a major regulator of tissue-specific FADS2 splicing. In HepG2 cells, PTB knockdown modulated alternative splicing of FADS2, as well as FADS3, a putative desaturase of unknown function. Omega-3 fatty acids decreased by nearly one half relative to omega-6 fatty acids in PTB knockdown cells compared with controls, with a particularly strong decrease in eicosapentaenoic acid (EPA) concentration and its ratio to arachidonic acid (ARA). This is a rare demonstration of a mechanism specifically altering the cellular omega-3 to omega-6 fatty acid ratio without any change in diet/media. These findings reveal a novel role for PTB, regulating availability of membrane components and eicosanoid precursors for cell signaling.  相似文献   

12.
Fatty acid desaturase enzymes perform dehydrogenation reactions leading to the insertion of double bonds in fatty acids, and are divided into soluble and integral membrane classes. Crystal structures of soluble desaturases are available; however, membrane desaturases have defied decades of efforts due largely to the difficulty of generating recombinant desaturase proteins for crystallographic analysis. Mortierella alpina is an oleaginous fungus which possesses eight membrane desaturases involved in the synthesis of saturated, monounsaturated and polyunsaturated fatty acids. Here, we describe the successful expression, purification and enzymatic assay of three M. alpina desaturases (FADS15, FADS12, and FADS9-I). Estimated yields of desaturases with purity >95% are approximately 3.5% (Ca. 4.6 mg/L of culture) for FADS15, 2.3% (Ca. 2.5 mg/L of culture) for FADS12 and 10.7% (Ca. 37.5 mg/L of culture) for FADS9-I. Successful expression of high amounts of recombinant proteins represents a critical step towards the structural elucidation of membrane fatty acid desaturases.  相似文献   

13.
14.
15.
Delta-like 3 (Dll3) is a divergent ligand and modulator of the Notch signaling pathway only identified so far in mammals. Null mutations of Dll3 disrupt cycling expression of Notch targets Hes1, Hes5, and Lfng, but not of Hes7. Compared with Dll1 or Notch1, the effects of Dll3 mutations are less severe for gene expression in the presomitic mesoderm, yet severe segmentation phenotypes and vertebral defects result in both human and mouse. Reasoning that Dll3 specifically disrupts key regulators of somite cycling, we carried out functional analysis to identify targets accounting for the segmental phenotype. Using microdissected embryonic tissue from somitic and presomitic mesodermal tissue, we identified new genes enriched in these tissues, including Limch1, Rhpn2, and A130022J15Rik. Surprisingly, we only identified a small number of genes disrupted by the Dll3 mutation. These include Uncx, a somite gene required for rib and vertebral patterning, and Nrarp, a regulator of Notch/Wnt signaling in zebrafish and a cycling gene in mouse. To determine the effects of Dll3 mutation on Nrarp, we characterized the cycling expression of this gene from early (8.5 dpc) to late (10.5 dpc) somitogenesis. Nrarp displays a distinct pattern of cycling phases when compared to Lfng and Axin2 (a Wnt pathway gene) at 9.5 dpc but appears to be in phase with Lfng by 10.5 dpc. Nrarp cycling appears to require Dll3 but not Lfng modulation. In Dll3 null embryos, Nrarp displayed static patterns. However, in Lfng null embryos, Nrarp appeared static at 8.5 dpc but resumed cycling expression by 9.5 and dynamic expression at 10.5 dpc stages. By contrast, in Wnt3a null embryos, Nrarp expression was completely absent in the presomitic mesoderm. Towards identifying the role of Dll3 in regulating somitogenesis, Nrarp emerges as a potentially important regulator that requires Dll3 but not Lfng for normal function.  相似文献   

16.
YsrH is a novel cis-encoded sRNA located on the opposite strand to fabH2, which is essential for fatty acid biosynthesis in bacteria. In this study, YsrH-mediated regulation of fabH2 expression was investigated in Yersinia pseudotuberculosis. Constitutive and inducible over-expression of YsrH decreased the mRNA level of fabH2, while expression of downstream fabD and fabG remained unaffected. Polynucleotide phosphorylase (PNPase) also played an important role in this regulation process by mediating YsrH decay in the exponential phase. Thus, our data defines a cis-encoded sRNA that regulates fatty acid synthesis via a regulatory mechanism also involving PNPase.  相似文献   

17.
18.
The Fad12 mutant of Synechocystis sp. PCC 6803 has a defect in the desA gene for Δ12 acyl-lipid desaturase. We identified a change in the nucleotide sequence of the structural gene for the desaturase, in which a leucine codon has been converted to a stop codon. Western blot analysis revealed that the Δ12 acyl-lipid desaturase was localized in both plasma membranes and thylakoid membranes of wild-type cells but was absent from both types of membrane in Fad12 cells. These findings suggest that the desaturation of fatty acids takes place in both types of membrane in Synechocystis sp. PCC 6803. The mutation in the Δ12 desaturase did not affect the lipid composition of thylakoid and plasma membranes, but it changed the fatty acid composition of lipids in similar ways in both types of membrane.  相似文献   

19.

Key message

Mosses have high contents of polyunsaturated fatty acids. Tissue-specific differences in fatty acid contents and fatty acid desaturase (FADS)-encoding gene expression exist. The arachidonic acid-synthesizing FADS operate in the ER.

Abstract

Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chain (vl) PUFAs (≥C20) such as arachidonic acid (AA) in seven moss species. These species were established in axenic in vitro culture, as a prerequisite for comparative metabolic studies under highly standardized laboratory conditions. In the model organism Physcomitrella patens, tissue-specific differences in the fatty acid compositions between the filamentous protonema and the leafy gametophores were observed. These metabolic differences correspond with differential gene expression of fatty acid desaturase (FADS)-encoding genes in both developmental stages, as determined via microarray analyses. Depending on the developmental stage and the species, AA amounts for 6–31 %, respectively, of the total fatty acids. Subcellular localization of the corresponding FADS revealed the endoplasmic reticulum as the cellular compartment for AA synthesis. Our results show that vlPUFAs are highly abundant metabolites in mosses. Standardized cultivation techniques using photobioreactors along with the availability of the P. patens genome sequence and the high rate of homologous recombination are the basis for targeted metabolic engineering in moss. The potential of producing vlPUFAs of interest from mosses will be highlighted as a promising area in plant biotechnology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号