首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Peroxiredoxin 2, a typical 2-Cys peroxiredoxin, is the third most abundant protein in erythrocytes. It is understood that the physiologically functional state of peroxiredoxin 2 is the monomer, and that its role in scavenging low levels of H(2)O(2) results in the formation of disulfide-linked dimers, which are reversibly reduced to monomers by the thioredoxin-thioredoxin reductase system. Additionally, peroxiredoxins are highly susceptible to sulfinic acid formation through reactions with various peroxides. This overoxidized form, which is thought to convert peroxiredoxins into molecular chaperones and to be accompanied by a transition to polymeric forms, can be reversed by sulfiredoxins. However, physiological conformational changes and the antioxidant role of erythrocyte peroxiredoxin 2 are still unclear because there is low sulfiredoxin and thioredoxin-thioredoxin reductase activity in erythrocytes. In this study, we examined the structural and redox states of peroxiredoxin 2 in fresh hemolysates and estimated the activities of native and overoxidized peroxiredoxin 2 purified from red blood cells to clear the physiological roles of peroxiredoxin 2 in erythrocyte. Our findings demonstrate that native peroxiredoxin 2 exists as high molecular weight (>160 kDa) oligomers and that decamers or higher order molecular weight oligomers (260-460 kDa) have peroxidase activity. We further showed that peroxiredoxin 2 oligomers, which were predominantly composed of monomers in the reduced form, exert a chaperone activity equal to that of overoxidized peroxiredoxin 2 polymers. These results provide the novel insight that redox-active peroxiredoxin 2 functions in human red blood cells as high molecular weight oligomers that possess peroxidase and chaperone activities.  相似文献   

2.
Aggregates of amyloid-beta (Aβ) peptides are thought to be involved in the development of Alzheimer’s disease because they can change synaptic plasticity and induce neuronal cell death by inflammation, oxidative damage, and transmembrane pore formation. Exactly which oligomeric species underlie these cytotoxic effects remains unclear. The work presented here established well-controlled aggregation conditions of Aβ 1–40 or Aβ1–42 peptides over a 20-day period and characterized these preparations with regard to their β-sheet content, degree of fibril formation, relative abundance of various oligomer sizes, and propensity to induce membrane pore formation and cytotoxicity. Using this multivariate data set, a systematic and inherently unbiased partial least squares (PLS) approach showed that for both peptides the abundance of oligomers in the tetramer to 13-mer range contributed positively to both pore formation and cytotoxicity, while monomers, dimers, trimers, and the largest oligomers (>210 kDa) were negatively correlated to both phenomena. Multivariate PLS analysis is ideally suited to handle complex data sets and interdependent variables such as relative oligomer concentrations, making it possible to elucidate structure function relationships in complex mixtures. This approach, therefore, introduces an enabling tool to the field of amyloid research, in which it is often difficult to interpret the activity of individual species within a complex mixture of bioactive species.  相似文献   

3.
4.
We compared on red cell membrane proteins and hemoglobin (Hb) the effects of (i) natural oxidant stress that has been suggested to occur in a variety of oxidative hemolytic anemias, and (ii) experimental stress induced by hydrogen peroxide. SDS-polyacrylamide gel electrophoresis was used for protein analysis. Under natural conditions (thalassemias, hemoglobinopathies with Hb unstability), a high molecular weight polymer (HMWP) and variable amounts of globin mono- and dimers became apparent. Furthermore, a major 12 kDa polypeptide, its dimer, and conspicuous spectrin degradation products in the band 2.2–2.6 region occurred in a patient carrying the highly unstable Hb Hammersmith. Under experimental conditions, incubation of erythrocyte ghosts with H2O2 in the presence of minimal concentration (25 μM) of Hb generated a HMWP at the expense of membrane proteins, mainly spectrin. Incubation of a diluted (200 μM) membrane-free hemolysate with H2O2 induced a HMWP, an array of globin oligomers and a 12 kDa polypeptide similar to that mentionned above. Therefore, the damage to the red cell membrane present in various oxidative hemolytic anemias, including polypeptide polymerisation and breakdown, can be produced by experimental oxidant stress. These observations support the view that the alterations described in the patients result directly from oxidative reactions. However, we did not observe in the patient the sharp breakdown of polyunsaturated fatty acids that was triggered in vitro by H2O2 in the presence of Hb acting as a catalyst. In most cases, oligo- and polymers were resistant to β-mercaptoethanol, and the chemical nature of the underlying cross-links is discussed. To our knowledge, the 12 kDa polypeptide, that we consider as arising from globin proteolysis, has never been reported under pathological conditions.  相似文献   

5.
Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis.  相似文献   

6.
《Free radical research》2013,47(8):990-1003
Abstract

Erythrocytes are continuously exposed to risk of oxidative injury due to oxidant oxygen species. To prevent damage, they have antioxidant agents namely, catalase (Cat), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2). Our aim was to contribute to a better understanding of the interplay between Prx2, Cat, and GPx under H2O2-induced oxidative stress, by studying their changes in the red blood cell cytosol and membrane, in different conditions. These three enzymes were quantified by immunoblotting. Malondialdehyde, that is, lipoperoxidation (LPO) in the erythrocyte membrane, and membrane-bound hemoglobin (MBH) were evaluated, as markers of oxidative stress. We also studied the erythrocyte membrane protein profile, to estimate how oxidative stress affects the membrane protein structure. We showed that under increasing H2O2 concentrations, inhibition of the three enzymes with or without metHb formation lead to the binding of Prx2 and GPx (but not Cat) to the erythrocyte membrane. Prx2 was detected mainly in its oxidized form and the linkage of metHb to the membrane seems to compete with the binding of Prx2. Catalase played a major role in protecting erythrocytes from high exogenous flux of H2O2, since whenever Cat was active there were no significant changes in any of the studied parameters. When only Cat was inhibited, Prx2 and GPx were unable to prevent H2O2-induced oxidative stress resulting in increasing MBH and membrane LPO. Additionally, the inhibition of one or more of these enzymes induced changes in the anchor/linker proteins of the junctional complexes of the membrane cytoskeleton–lipid bilayer, which might lead to membrane destabilization.  相似文献   

7.
目的观察硫氧还蛋白过氧化物酶Ⅱ(Peroxiredoxin Ⅱ,PrxII)是否可以克服昆明(Kunming)小鼠早胚体外发育2-细胞阻滞。方法取昆明小鼠1-细胞胚置于含PrxII蛋白的M16培养液中培养,观察PrxII对昆明小鼠早胚发育潜能和2-细胞胚内活性氧自由基(reactive oxygen species,ROS)水平的影响;同时比较昆明和B6C3F1小鼠1-细胞胚在M16中各自的发育情况;激光扫描共聚焦显微镜分别检测比较昆明与B6C3F1小鼠体外培养2-细胞胚内ROS水平以及昆明小鼠体外培养与体内发育2-细胞胚内ROS水平。结果M16培养液中添加PrxII蛋白(1nmol/L和100nMol/L)可以明显降低昆明小鼠体外培养2-细胞胚内ROS水平(P<0.05),但不能克服昆明小鼠体外发育2-细胞阻滞;昆明小鼠1-细胞胚在M16中培养存在2-细胞阻滞现象,而B6C3F1小鼠无2-细胞阻滞现象;昆明小鼠体外培养2-细胞胚内ROS水平显著低于体内发育2-细胞胚(P<0.05),亦略低于B6C3F1小鼠体外培养2-细胞胚内ROS水平(P>0.05)。结论M16培养液中添加PrxII可以明显降低2-细胞胚...  相似文献   

8.
The marine red alga Georgiella confluens collected from Mackellar Inlet, King George Island, South Shetland Islands, Antarctic, was used in the isolation of a protein with agglutinating activity. The Georgiella confluens haemagglutinin (GCH) was extracted with 20 mM phosphate buffer, pH 7.0, and purified through ion exchange chromatography, followed by affinity chromatography on immobilized porcine stomach mucin. Among the erythrocytes analysed (human A, B and O groups, rabbit and chicken), GCH agglutinated specifically chicken erythrocytes. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis of the haemagglutinin revealed a single band of 21.5 kDa, while by gel filtration on Sephadex G-100 its native molecular mass was 25.5 kDa, suggesting that GCH is a monomeric protein. Haemagglutination studies showed that the GCH activity was stable through temperature variations and did not exhibit divalent cation dependence. Furthermore, the haemagglutinin was inhibited by the complex glycoproteins of porcine stomach mucin and fetuin, whereas the mono-, di-, and trisaccharides tested showed no effect.  相似文献   

9.
The function of ubiquitous 2-Cys peroxiredoxins (Prxs) can be converted alternatively from peroxidases to molecular chaperones. This conversion has been reported to occur by the formation of high-molecular-weight (HMW) complexes upon overoxidation of or ATP/ADP binding to 2-Cys Prxs, but its mechanism is not well understood. Here, we show that upon binding to phosphatidylserine or phosphatidylglycerol dimeric human 2-Cys PrxII (hPrxII) is assembled to trefoil-shaped small oligomers (possibly hexamers) with full chaperone and null peroxidase activities. Spherical HMW complexes are formed, only when phosphatidylserine or phosphatidylglycerol is bound to overoxidized or ATP/ADP-bound hPrxII. The spherical HMW complexes are lipid vesicles covered with trefoil-shaped oligomers arranged in a hexagonal lattice pattern. Thus, these lipids with a net negative charge, which can be supplied by increased membrane trafficking under oxidative stress, are essential for the structural and functional switch of hPrxII and possibly most 2-Cys Prxs.  相似文献   

10.
The properties of natural human interferon γ (IFN-γ) molecules dissolved in protein-denaturing and non-denaturing solvents were examined by high-performance size-exclusion chromatography on a gel permeation column. IFN-γ and tritium-labeled IFN-γ molecules formed either dimers (>90.5%) with the molecular mass of 60 kDa or probably tetramers (<9.5%) with the molecular mass of approximately 100 kDa in non-denaturing solvents, and no monomer was detected. These oligomers were dissociated in protein-denaturing solvents such as 6 M guanidine hydrochloride, and IFN-γ existed as monomers. There is no effect on formation of the monomer based on the dissociation of oligomers by acid treatment at pH 4.0. The monomers in protein-denaturing solvents formed dimers by association when applied to a column equilibrated with a non-denaturing solvent of phosphate buffer, pH 7.0. In conclusion, natural human IFN-γ forms oligomers, particularly dimers, in non-denaturing solution, and this oligomer formation is a reversible reaction.  相似文献   

11.
通过测定红细胞胞浆及膜中的PTPP活性,发现人正常血红细胞中胞浆PTPP活性约占红细胞PTPP总活性的70-80%,膜中只有约20-30%的PTPP活性。很多因素诸如:病变、PH值、温度、离子强度、细胞贮存时间以及药物等,对PTPP在胞浆与膜中的分布有影响。可以推测:膜上的PTPP能通过某种机制解离下来,进入胞浆;相反的过程,胞浆中的PTPP也能通过某种机制与膜结合。这种偶联与去偶联的具体机制及其生理功能还有待进一步探索。  相似文献   

12.
Xiao N  Du G  Frohman MA 《The FEBS journal》2005,272(15):3929-3937
Phospholipase D1 (PLD1) is a signal-transduction regulated enzyme which regulates several cell intrinsic processes including activation of NAPDH oxidase, which elevates intracellular H2O2. Several proteins have been reported to interact with PLD1 in resting cells. We sought to identify proteins that interact with PLD1 after phorbol 12-myristate 13-acetate (PMA) stimulation. A novel interaction with peroxiredoxin II (PrxII), an enzyme that eliminates cellular H2O2, which is a known stimulator of PLD1, was identified by PLD1-affinity pull-down and MS. PMA stimulation was confirmed to promote physical interaction between PLD1 and PrxII and to cause PLD1 and PrxII to colocalize subcellularly. Functional significance of the interaction was suggested by the observation that over-expression of PrxII specifically reduces the response of PLD1 to stimulation by H2O2. These results indicate that PrxII may have a signal-terminating role for PLD1 by being recruited to sites containing activated PLD1 after cellular stimulation involving production of H2O2.  相似文献   

13.
14.
The present study aimed to find out a link between ageing of rat and lamprey erythrocytes and activity of two isoforms of protein kinase C (PKC), РKСα and РKСζ. The whole cell population was separated into fractions of different ages in Percoll density gradient. The validity of separation was confirmed by the number of immature erythrocytes, reticulocytes. PKC activity was analyzed in cytosolic and membrane cell fractions. Rat erythrocytes express both PKC isoforms, РKСα and РKСζ, whereas lamprey erythrocytes express only РKСζ. РKСα is identified as a major band at ~ 80 kDa and minor bands at ~ 55–65 kDa; РKСζ is represented by a single band at ~ 80 kDa. In young rat erythrocytes, РKСα is detected mainly in cytosolic fractions, while in membrane fractions its level is by far lower. As cells age, PKCα is translocated from the cytosol to membranes and undergoes proteolytic degradation due to repeated cycles of activation. As a result, in aged erythrocytes relative total PKCα expression (as a sum of expressions in the cytosol and membranes per total protein level) diminishes, indicating a depletion of the PKCα pool and a decline in its functional activity. In both animal species, a highest PKCζ level is observed in the cytosol of young erythrocytes. Erythrocyte ageing is accompanied by a gradual decrease in expression of free cytosolic PKCζ and concurrent increase in the level of its membrane-bound forms. However, in contrast to PKCα, PKCζ is not proteolyzed; its total level in cells and perhaps functional activity do not change throughout the erythrocyte lifespan.  相似文献   

15.
The influence of thermal stress on the association between human erythrocyte membranes and cytosolic proteins was studied by exposing erythrocyte suspensions and whole blood to different elevated temperatures. Membranes and cytosolic proteins from unheated and heat-stressed erythrocytes were analyzed by electrophoresis, followed by mass spectrometric identification. Four major (carbonic anhydrase I, carbonic anhydrase II, peroxiredoxin VI, flavin reductase) and some minor (heat shock protein 90α, heat shock protein 70, α-enolase, peptidylprolyl cistrans isomerase A) cytosolic proteins were found to be associated with the erythrocyte membrane in response to in vitro thermal stress. Unlike the above proteins, catalase and peroxiredoxin II were associated with membranes from unheated erythrocytes, and their content increased in the membrane following heat stress. The heat-induced association of cytosolic proteins was restricted to the Triton shells (membrane skeleton/cytoskeleton). Similar results were observed when Triton shells derived from unheated erythrocyte membranes were incubated with an unheated erythrocyte cytosolic fraction at elevated temperatures. This is a first report on the association of cytosolic catalase, α-enolase, peroxiredoxin VI, peroxiredoxin II and peptidylprolyl cistrans isomerase A to the membrane or membrane skeleton of erythrocytes under heat stress. From these results, it is concluded that specific cytosolic proteins are translocated to the membrane in human erythrocytes exposed to heat stress and they may play a novel role as erythrocyte membrane protectors under stress by stabilizing the membrane skeleton through their interactions with skeletal proteins.  相似文献   

16.
Alzheimer's disease (AD) is a protein misfolding disease. Early hypothesis of AD pathology posits that 39-43 AA long misfolded amyloid beta (Aβ) peptide forms a fibrillar structure and induces pathophysiological response by destabilizing cellular ionic homeostasis. Loss of cell ionic homeostasis is believed to be either indirectly due to amyloid beta-induced oxidative stress or directly by its interaction with the cell membrane and/or activating pathways for ion exchange. Significantly though, no Aβ specific cell membrane receptors are known and oxidative stress mediated pathology is only partial and indirect. Most importantly, recent studies strongly indicate that amyloid fibrils may not by themselves cause AD pathology. Subsequently, a competing hypothesis has been proposed wherein amyloid derived diffusible ligands (ADDLs) that are large Aβ oligomers (∼ > 60 kDa), mediate AD pathology. No structural details, however, of these large globular units exist nor is there any known suitable mechanism by which they would induce AD pathology. Experimental data indicate that they alter cell viability by non-specifically changing the plasma membrane stability and increasing the overall ionic leakiness. The relevance of this non-specific mechanism for AD-specific pathology seems limited. Here, we provide a viable new paradigm: AD pathology mediated by amyloid ion channels made of small Aβ oligomers (trimers to octamers). This review is focused to 3D structural analysis of the Aβ channel. The presence of amyloid channels is consistent with electrophysiological and cell biology studies summarized in companion reviews in this special issue. They show ion channel-like activity and channel-mediated cell toxicity. Amyloid ion channels with defined gating and pharmacological agents would provide a tangible target for designing therapeutics for AD pathology.  相似文献   

17.
Rice overexpressed thaumatin-like protein gene and the proteins from the leaf blades of 2-week-old transgenic rice seedlings were fractionated into cytosolic and membrane fractions, and separated by two-dimensional polyacrylamide gel electrophoresis and stained with Commassie brilliant blue. Among of 440 detected proteins, 5 proteins were up-regulated and 5 proteins were down-regulated by the overexpression of thaumatin-like protein. In the sense thaumatin-like protein transgenic rice and/or in rice inoculated with Xanthomonas oryzae pv. oryzae (Xo7435), 2-cys peroxiredoxin, thaumatin-like protein and glycine cleavage H protein were up-regulated, while oxygen evolving complex protein 2 was down-regulated. These results suggest that thaumatin-like protein-mediated disease resistance of rice against bacterial blight disease is the results of changes in proteins related to oxidative stress and energy metabolism in addition to changes in proteins related to defence.  相似文献   

18.
Peroxynitritegenerated in arteries from superoxide and NO may damageCa2+ pumps. Here, we report the effects of peroxynitrite onATP-dependent azide-insensitive uptake of Ca2+ into pigcoronary artery vesicular membrane fractions F2 [enriched in plasmamembrane (PM)] and F3 [enriched in sarcoplasmic reticulum (SR)].Membranes were pretreated with peroxynitrite and then with DTT toquench this agent. This pretreatment inhibited Ca2+ uptakein a peroxynitrite concentration-dependent manner, but the effect wasmore severe in F3 than in F2. The inhibition was thus not overcome byexcess DTT used to quench peroxynitrite and was not affected ifcatalase, SOD, or mannitol was added along with peroxynitrite. Suchdamage to the pump protein would be difficult to repair if producedduring ischemia-reperfusion. The acylphosphates formed with ATPin F3 corresponded mainly to the SR Ca2+ pump (110 kDa),but in F2 both PM (140 kDa) and 110-kDa bands were observed.Peroxynitrite treatment of F2 inhibited only the 110-kDa band.Inhibition of Ca2+ uptake and acylphosphate formation fromATP correlated well in peroxynitrite-treated F3 samples. However,inhibition of acylphosphates from orthophosphate (reverse reaction ofthe pump) was slightly poorer. Peroxynitrite treatment also covalentlycross-linked the pump protein, yielding no dimers but only largeroligomers. In contrast, cross-linking of the SR Ca2+ pumpin skeletal and cardiac muscles gives dimers as the first oligomers.Therefore, we speculate that SERCA2 has a different quaternarystructure in the coronary artery smooth muscle.

  相似文献   

19.
A new polyclonal antibody to the humanerythrocyte urea transporter UT-B detects a broad band between 45 and65 kDa in human erythrocytes and between 37 and 51 kDa in raterythrocytes. In human erythrocytes, the UT-B protein is the Kidd (Jk)antigen, and Jk(a+b+) erythrocytes express the 45- to 65-kDa band.However, in Jk null erythrocytes [Jk(ab)], only a faint band at55 kDa is detected. In kidney medulla, a broad band between 41 and 54 kDa, as well as a larger band at 98 kDa, is detected. Human and ratkidney show UT-B staining in nonfenestrated endothelial cells indescending vasa recta. UT-B protein and mRNA are detected in rat brain,colon, heart, liver, lung, and testis. When kidney medulla or liverproteins are analyzed with the use of a native gel, only a singleprotein band is detected. UT-B protein is detected in cultured bovineendothelial cells. We conclude that UT-B protein is expressed in morerat tissues than previously reported, as well as in erythrocytes.

  相似文献   

20.
The oligomeric state of human Band 3 (Mr = 95,000), the erythrocyte membrane anion exchanger, was examined by size exclusion high performance liquid chromatography in solutions containing the nonionic detergent C12E8 (octaethylene glycol n-dodecyl monoether). Band 3 was heterogeneous with respect to oligomeric composition, the predominant (70%) species being a dimer that bound 0.57 mg of C12E8/mg of protein (Stokes radius = 78 A, s20,w = 6.9 S). Variable amounts of larger oligomers were also present; however, no evidence for equilibration between oligomeric species was observed in detergent solution. Analytical and large zone size exclusion chromatography showed that Band 3 could not be dissociated to monomers, other than by protein denaturation. The membrane domain of Band 3 (Mr = 52,000) was also dimeric, but without evidence for higher oligomeric forms, which implies that the interactions responsible for higher associations involve the cytoplasmic domain. Prelabeling of Band 3 with the anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate had no effect upon the oligomeric state of either intact Band 3 or its 52-kDa membrane domain. Band 3 oligomeric state could be reversibly changed in the membrane by altering the pH of the solution. The fraction of Band 3 not associated with the cytoskeleton was almost entirely dimeric. Band 3 purified from erythrocytes separated by density gradient centrifugation revealed that older red cells contained a larger proportion of higher oligomers than did younger cells. We conclude that Band 3, in the membrane and in C12E8 solution, exists as a mixture of dimers and larger oligomers. The higher oligomers interact with the cytoskeleton, increase in amount with cell age, and are held together by interactions of the cytoplasmic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号