首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel non-hemorrhagic metalloproteinase, AHPM, was purified from the venom of Agkistrodon halys pallas by a combination of ion-exchange and gel filtration chromatography. AHPM is a dimeric glycoprotein with multiple pIs around pH 7.9 and has a molecular mass of 110 kDa with two blocked N-terminuses. Partial sequence of AHPM obtained by LC-MS/MS analysis together with its dimeric nature reveals that it is a P-IIIc snake venom metalloproteinase composed of metalloproteinase, disintegrin-like and cysteine-rich domains. AHPM has a conserved DECD sequence in the disintegrin-like domain. AHPM hydrolyzes casein and fibrinogen and also dissolves fibrin clots and the proteolytic activity is abolished by EDTA, but not by PMSF, suggesting that it is a metalloproteinase. The protease hydrolyzes rapidly the Aα-chain of fibrinogen followed by the Bβ-chain and does not cleave the γ-chain. AHPM contains endogenous Zn2+ and Ca2+ ions at a molar ratio of 1:1.9 and 1:4.2, respectively, and Zn2+ ions are essential for its proteolytic activity. AHPM inhibits collagen-and ADP-induced platelet aggregation with half maximal inhibitory concentrations of 200 ± 8 nM and 280 ± 10 nM, respectively. EDTA markedly attenuates the inhibition of ADP-induced platelet aggregation by AHPM, indicating that the fibrinogenolytic activity of AHPM is involved in its inhibition of ADP-induced platelet aggregation. AHPM is devoid of hemorrhagic activity when injected (up to 30 μg) subcutaneously into mice. AHPM is so far identified as first non-hemorrhagic P-IIIc SVMP which has both fibrinolytic and platelet aggregation-inhibition activities. The bifunctional enzyme may have a potential clinical application as a thrombolytic agent.  相似文献   

2.
A Zn2+-glycerophosphocholine cholinephosphodiesterase was purified with a specific activity of 4.6 μmole/min·mg protein from bovine brain membranes by procedures involving PI-PLC solubilization, concanavalin A affinity chromatography, CM-sephadex chromatography and Sephadex G-150 chromatography. Based on molecular weight determination gel chromatography and SDS polyacrylamide gel electrophoresis, the phosphodiesterase activity appears to be a dimeric protein (110 kDa) composed of two subunits with a molecular weight of approximately 54 kDa. The Km value for p-nitrophenylphosphocholine and the optimum pH were found to be 16 μM and pH 10.5, respectively. The phosphodiesterase was inhibited by Cu2+, but not the other divalent metal ions. The activity of the apoenzyme was remarkably activated by Co2+ or Zn2+, but not Mn2+ or Mg2+. In addition, the inactivation of the enzyme in glycine buffer was prevented by Mn2+ or Zn2+, but not Co2+ or Mg2. In a separate experiment, comparing properties of the purified and membrane-bound phosphodiesterases, the forms of two enzymes were quite similar except in stability. Both enzymes were more stable at pH 7.4 than pH 5 or 10. However, the membrane-bound enzyme was more stable than the soluble enzyme at all three pHs. These data suggest that the activity of the phosphodiesterase may be stabilized in-vivo.  相似文献   

3.
The Ca2+/Mg2+ ATPase of the rat heart sarcolemmal particles was solublized with Triton X-100 after treating the membranes with trypsin and purified by high speed centrifugation, ammonium sulfate fractionation, hydrophobic chromatography and gel filtration. The purified enzyme was seen as a single protein band in nondenaturing polyacrylamide gel electrophoresis and its molecular weight by gel filtration was found to be about 240000. The enzyme utilized Ca-ATP or Mg-ATP as a substrate with high affinity sites (Km = 0.12 – 0.16 mM) and low affinity sites (Km = 1 mM). The enzyme also utilized CTP, GTP, ITP, UTP and ADP as substrates but at a lower rate in comparison to ATP. The enzyme was activated by Ca2+ (Ka = 0.4 mM) and Mg2+ (Ka = 0.2 mM) as well as by other cations in the order Ca2– > Mg2+ > Mn2+ > Sr2+ > Ba2+ > Ni2+ > Cu2+. The ATPase activity in the presence of Ca2+ was markedly inhibited by Mg2+, Mn2+, Ni2+ and Cu2+ whereas the monovalent cations such as Na+ and K+ were without effect. The enzyme did not exhibit Ca2+ stimulated Mg2+ dependent ATPase activity and was insensitive to calmodulin, ouabain, verapamil, D-600, oligomycin, azide and vanadate. Optimum pH for Ca2+ or Mg2+ ATPase activity was 8.5 – 9.0. In view of the possible ectoenzyme nature of the ATPase, its role in adenine nucleotide and Ca2+ metabolism in the myocardium is discussed.  相似文献   

4.
为了探讨重金属Cd2+和Cu2+胁迫对泥蚶消化酶活性的影响,运用酶学分析的方法,按《渔业水质标准》(GB 11607)规定的Cd2+、Cu2+最高限量值的1、2、5、10倍设置重金属离子Cd2+、Cu2+浓度及其组合,研究了在重金属Cd2+、Cu2+胁迫下,30d内泥蚶3种消化酶活性的变化规律。结果表明:与空白对照组相比,在重金属Cd2+、Cu2+或其组合的胁迫下,较低浓度组泥蚶的淀粉酶活性实验前期增强(即被诱导),实验后期减弱(即被抑制),较高浓度组泥蚶的淀粉酶活性从实验一开始就减弱,并保持在较低水平,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合Cu2+ > (Cd2++Cu2+)组合 > Cd2+;泥蚶脂肪酶的活性实验前期增强,实验后期转为微减弱或减弱,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合(Cd2++Cu2+)组合 > Cu2+ > Cd2+;泥蚶胃蛋白酶的活性实验前期增强,且活性呈现升高-降低-再升高-再降低的变化,实验后期分别表现微增强、微减弱和减弱,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合(Cd2++Cu2+)组合 > Cu2+ > Cd2+。可见:环境中的Cd2+和Cu2+对泥蚶的消化酶活性起着明显的影响作用。  相似文献   

5.
Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 M), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 M). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.Abbreviations Ca2+-ATPase calcium-activated, magnesium-dependent adenosine triphosphatase - CaM calmodulin - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetate - EDTA ethylene-diaminetetraacetate - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetate - NADPH reduced form of nicotinamide adenine dinucleotide phosphate  相似文献   

6.
Soluble and alginate immobilized urease was utilized for detection and quantitation of mercury in aqueous samples. Urease from the seeds of pumpkin, being a vegetable waste, was extracted and purified to apparent homogeneity (sp. activity 353 U/mg protein; A280/A260 = 1.12) by heat treatment at 48 ± 0.1 °C and gel filtration through Sephadex G-200. Homogeneous enzyme preparation was immobilized in 3.5% alginate leading to 86% immobilization, no leaching of enzyme was found over a period of 15 days at 4 °C. Urease catalyzed urea hydrolysis by soluble and immobilized enzyme revealed a clear dependence on the concentration of Hg2+. Inhibition caused by Hg2+ was non-competitive (Ki = 1.2 × 10−1 μM for soluble and 1.46 × 10−1 μM for alginate immobilized urease.). Time-dependent inhibition both in presence and in absence of Hg2+ ion revealed a biphasic inhibition in activity. For optimization of this process response surface methodology (RSM) was utilized where two-level-two-full factorial (22) central composite design (CCD) has been employed. The regression equation and analysis of variance (ANOVA) were obtained using MINITAB® 15 software. Predicted values thus obtained were closed to experimental value indicating suitability of the model. 3D response surface plot, iso-response contour plot and process optimization curve were helpful to predict the results by performing only limited set of experiments.  相似文献   

7.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

8.
Previously we showed in an in situ porcine model that the thiadiazinone derivative [+]EMD 60263, a Ca2+ sensitizer without phosphodiesterase III inhibitory properties, increased contractility more profoundly in stunned than in non-stunned myocardium. This finding was consistent with the observed leftward shifts of the pCa2+/Mg2+-ATPase curves of isolated myofibrils induced by [+]EMD 60263. The aim of the present investigation was to study the possible involvement of protein kinase C in the mechanism of reduced Ca2+ responsiveness of myofilaments during stunning. No differences were observed in the maximal activity of the Ca2+-stimulated Mg2+-ATPase and in the pCa50 of myofibrils isolated from non-stunned and stunned myocardium. After phosphorylation with [gamma-32P]-ATP and excess of purified rat brain protein kinase C, the myofibrils were separated on sodiumdodecylsulphate-polyacrylamide gelectrophoresis and the32 P incorporation counted by the Molecular Imager. Ca2+/phosphatidylserine/sn-1,2 diolein-dependent32 P incorporation catalyzed by excess of purified rat brain protein kinase C in C-protein, TnT and TnI subunits did not show any differences between myofibrils from non-stunned and stunned myocardium. However, protein kinase C-induced phosphorylation of myofibrils isolated from ventricular myocardium of sham-operated pigs resulted in a marked leftward shift of the pCa50 from 6.03 ± 0.04 to 6.44 ± 0.06 (p < 0.05), while porcine heart cyclic AMP-dependent protein kinase-induced phosphorylation resulted in an expected small rightward shift to 5.97, although statistical significance was not reached. Protein kinase C-induced phosphorylation also stimulated (80%) the maximal myofibrillar Mg2+-ATPase activity. [+]EMD 60263 (3 µM) produced a leftward shift of the myofibrillar pCa2+/Mg2+-ATPase curve which was unaffected by prior protein kinase C-induced phosphorylation. In conclusion, the findings with isolated myofibrils from myocardium of anaesthetized open-chest pigs indicate that protein kinase C might be involved in the mechanism of reduced Ca2+ responsiveness of myofilaments in stunned myocardium. However, at this stage no differences could be found between the maximal activity of the Ca2+-stimulated Mg2+-ATPase, the pCa50 and the degree of phosphorylation of myofibrils isolated from stunned and non-stunned myocardium.  相似文献   

9.
The thermodynamic efficiency of the calmodulin-activated form of the Ca2+-pumping ATPase of the bovine cardiac sarcolemma (SL) was evaluated in sealed vesicles under reversible conditions. The free internal Ca2+ concentration ([Ca2+]i) established in the SL vesicle lumen by action of the ATPase was determined as a function of the [ATP]/([ADP][Pi]) ratio for the following experimental conditions: 250mM sucrose, 100mM KCI, 0.1mM Mg2+, 25mM HEPES, 25mM Tris, pH 7.40, at 37°C, [Ca2+]o=50nM (1mM Ca/EGTA buffer), 0.75mM Mg-ATP, 0.1mM Pi, variable [ADP]. Under these conditions, with the pump working near itsK m of 64nM, the [Ca2+]i achieved was 18mM, decreasing with increasing [ADP] for [ADP] 0.84mM. A plot of the square of the [Ca2+]i/[Ca2+]o ratio against [ATP]/([ADP][Pi]) gave a straight line with a slope of 1.5×107M. This was in agreement, within the experimental error, with the equilibrium constant for ATP hydrolysis under these conditions (1.09×107M). These results demonstrate (1) tight coupling between Ca2+ transport and ATP hydrolysis with a stoichiometry of 2 Ca2+ moved per ATP split and (2) a low degree of passive leakage. Analysis at low [ADP] (<0.83mM) showed the unexpected result that ADP increases the rate of theforward reaction of the pump. The maximal effect on the initial rate is a 96±5% increase, with an EC50 of approximately 0.4mM (ADP). Similar but lesser stimulation was observed with CDP. The implications of the above results for the energetics of the pump and for its physiological function in the beating heart are discussed.  相似文献   

10.
Nucleotidase cascades (apyrase, 5′ nucleotidase, and adenosine deaminase (ADA) were investigated in the parasitic trematode Fasciola gigantica. ADA had the highest activity in the nucleotidase cascades. Adenosine deaminase was purified from F. gigantica through acetone precipitation and chromatography on CM-cellulose. Two forms of enzyme (ADAI, ADAII) were separated. ADAII was purified to homogeneity after chromatography on Sephacryl S-200. The molecular mass was 29 KDa for the native and denatured enzyme using gel filtration and SDS-PAGE, respectively. The enzyme (ADAII) had a pH optimum at 7.5 and a Km 1.0 mM adenosine, a temperature optimum at 40 °C and heat stability up to 40 °C. The order of effectiveness of metals as inhibitors was found to be Hg2+ > Mn2+ > Cu2+ > Ca2+ > Zn2+ > Ni2+ > Ba2+.  相似文献   

11.
Summary Proteolytic digestion of sarcoplasmic reticulum vesicles with trypsin has been used as a structural modification with which to examine the interaction between the ATP hydrolysis site and calcium transport sites of the (Ca2++Mg2+)-ATPase. The kinetics of trypsin fragmentation were examined and the time course of fragment production compared with ATP hydrolytic and calcium uptake activities of the digested vesicles. The initial cleavage (TD 1) of the native ATPase to A and B peptides has no effect on the functional integrity of the enzyme, hydrolytic and transport activities remaining at the levels of the undigested control. Concomitant with the second tryptic cleavage (TD 2) of the A peptide to A1 and A2 fragments, calcium transport is inhibited. Kinetic analysis demonstrates that the rate constant for inhibition of calcium uptake is correlated with the rate constant of a fragment disappearance. Both Ca2+-dependent and total ATPase activities are unaffected by this second cleavage. Passive loading of vesicles with calcium and subsequent efflux measurements show that transport inhibition is not due to increased permeability of the membrane to calcium even at substantial extents of digestion. Steady-state levels of acidstable phosphoenzyme are unaffected by either TD 1 or TD 2, indicating that uncoupling of the hydrolytic and transport functions does not increase the turnover rate of the enzyme and that TD 2 does not change the essential characteristics of the ATP hydrolysis site. Sarcoplasmic reticulum (SR) vesicles were examined for the presence of tightly bound nucleotides and are shown to contain 2.8–3.0 nmol ATP and 2.6–2.7 nmol ADP per mg SR protein. The ADP content of SR remains essentially unchanged with TD 1 cleavage of the ATPase enzyme to A and B peptides, but declines upon TD 2 in parallel with the digestion of the A fragment and the loss of calcium uptake activity of the vesicles. The ATP content is essentially constant throughout the course of trypsin digestion. The results are discussed in terms of current models of the SR calcium pump and the molecular mechanism of energy transduction.  相似文献   

12.
Sarcolemmal Ca2+/Mg2+ ecto-ATPase (Myoglein; MW 180 kD) is a membrane bound enzyme which requires a millimolar concentration of either Ca2+ or Mg2+ for maximal hydrolysis of ATP. The isoelectric point (pI) of the cardiac ecto-ATPase was 5.7. The purified Ca2+/Mg2+ ecto-ATPase from the rat heart sarcolemmal appeared as a single band with MW 90 kD in the SDS-PAGE. In order to understand the nature of this enzyme, the 90 kD band in the SDS-PAGE was electroeluted; the analysis of the eluate showed 2 prominent bands with MW 90 and 85 kD. The presence of 2 bands was further confirmed by gradient gel (10-20%) electrophoresis in 0.375 M Tris-HCl buffer, pH 8.8. Analysis of the purified Ca2+/Mg2+ ecto-ATPase as well as the electroeluted protein in a non-equilibrium linear two dimensional electrophoresis (Ampholyte pI 3.0-10.0) also showed two distinct bands. Mass spectroscopic analysis of the enzyme using different matrix combinations revealed the presence of multi-components indicating microheterogeneity in the protein structure. Treatment of the ecto-ATPase with DL-dithiothreitol did not alter the pattern of mass spectroscopic analysis and this indicated that the microheterogeneity may be due to some posttranslational modifications. It is concluded that rat cardiac Ca2+/Mg2+ ecto-ATPase is an acidic protein having two subunits. Furthermore, the enzyme shows microheterogeneity in its molecular structure.  相似文献   

13.
The Ca2+-independent phospholipase A2 (iPLA2) subfamily of enzymes is associated with arachidonic acid (AA) release and the subsequent increase in fatty acid turnover. This phenomenon occurs not only during apoptosis but also during inflammation and lymphocyte proliferation. In this study, we purified and characterized a novel type of iPLA2 from bovine brain. iPLA2 was purified 4,174-fold from the bovine brain by a sequential process involving DEAE-cellulose anion exchange, phenyl-5PW hydrophobic interaction, heparin-Sepharose affinity, Sephacryl S-300 gel filtration, Mono S cation exchange, Mono Q anion exchange, and Superose 12 gel filtration. A single peak of iPLA2 activity was eluted at an apparent molecular mass of 155 kDa during the final Superose 12 gel-filtration step. The purified enzyme had an isoelectric point of 5.3 on twodimensional gel electrophoresis (2-DE) and was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3), Triton X-100, iron, and Ca2+. However, it was not inhibited by bromoenol lactone (BEL), an inhibitor of iPLA2, and adenosine triphosphate (ATP). The spot with the iPLA2 activity did not match with any known protein sequence, as determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. Altogether, these data suggest that the purified enzyme is a novel form of cytosolic iPLA2.  相似文献   

14.
Ca2+ mobilization in muscle cells from the circular muscle layer of the mammalian intestine is mediated by IP3-dependent Ca2+ release. Ca2+ mobilization in muscle from the adjacent longitudinal muscle layer involves a distinct, phosphoinositide-independent pathway. Receptors for contractile agonists in longitudinal muscle cells are coupled via a pertussis toxinsensitive G protein to activation of PLA2 and formation of arachidonic acid (AA). The latter activates Cl channels resulting in depolarization of the plasma membrane and opening of voltage-sensitive Ca2+ channels. Ca2+ influx via these channels induces Ca2+ release by activating sarcoplasmic ryanodine receptor/Ca2+ channels. The increase in [Ca2+]i activates membrane-bound ADP ribosyl cyclase, and the resultant formation of cADPR enhances Ca2+-induced Ca2+ release.  相似文献   

15.
Membrane Ca2+-ATPase activity was stimulated in vitro separately by T4 (10−10 M) and by epinephrine (10−6 M). In the presence of a fixed concentration of T4, additions of 10−8 and 10−6 M epinephrine reduced the T4 effect on the enzyme. β-Adrenergic blockade with propranolol (10−6 M) prevented stimulation by epinephrine of Ca2+-ATPase activity, but did not prevent the suppressive action of epinephrine on T4-stimulable Ca2+-ATPase. In contrast α1-adrenergic blockade with unlabelled prazosin restored the effect of T4 on Ca2+-ATPase activity in the presence of epinephrine. Like propranolol, prazosin prevented enhancement of enzyme activity by epinephrine in the absence of thyroid hormone. Neither prazosin nor propranolol had any effect on the stimulations by T4 of red cell Ca2+-ATPase in the absence of epinephrine. Analysis of radiolabelled prazosin binding to human red cell membranes revealed the presence of a single class of high-affinity binding sites (Kd, 1.2 × 10−8 M; Bmax, 847 fmol/mg membrane protein). Thus, the human erythrocyte membrane contains α1-radrenergic receptor sites that are capable of regulating Ca2+-ATPase activity.  相似文献   

16.
The phospholipid requirement of the (Ca2+ + Mg2+)-ATPase present in a membrane fraction from human platelets was studied using various purified phospholipases. Only those phospholipases, which hydrolyse the negatively charged phospholipids, inhibited the (Ca2+ + Mg2+)-ATPase activity. The ATPase activity could be restored by adding mixed micelles of Triton X-100 and phosphatidylserine or phosphatidylinositol. Micelles with phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine or sphingomyelin could not be used for reconstitution and inhibited the activity of the native enzyme.  相似文献   

17.
18.
Bovine brain contains two calmodulin-dependent phosphodiesterase kinases which are separated on Sephacryl S-300 column. One of these kinases has been purified to homogeneity and shown to belong to the calmodulin-dependent protein kinase II family. Phosphorylation of the 63 kDa phosphodiesterase by this purified protein kinase results in the incorporation of 1.0 mol phosphate per mol subunit and an accompanying increase in Ca2+ concentrations required for the phosphodiesterase activation by calmodulin. The protein kinase undergoes autophosphorylation to incorporate 1.0 mol phosphate per mol of subunit of the enzyme and the autophosphorylated enzyme is active, independent of the presence of Ca2+. The autophosphorylation reaction as well as the protein kinase reaction are rendered Ca2+ independent in less than 15 seconds when approximately one mol phosphate per mol protein kinase is incorporated. The result suggests that activation of phosphodiesterase phosphorylation reaction may occur prior to the activation of phosphodiesterase and phosphatase during a cell Ca2+ flux via the protein kinase autophosphorylation mechanism.Abbreviations SDS sodium dodecyl sulfate - EGTA ethylene glycol bis (-aminoethyl ether) - N,N,N,N tetra acetic acid - EDTA ethylenediamine-tetraacetic acid - cAMP cyclic adenosine 35 monophosphate This work is supported by grants from the Medical Research Council of Canada (JHW), the Heart and Stroke Foundation of Alberta (JHW and RKS) and the Heart and Stroke Foundation of Saskatchewan (RKS)  相似文献   

19.
Bacillus subtilis glutamine synthetase (GS) was highly expressed (about 86% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-glnA, which was induced by 0.4 mM IPTG in LB medium, and maximal theanine-forming activity of the recombinant GS induced in LB is 6.4 U/mg at a series concentration (0–100 mM) of Mn2+ at optimal pH 7.5. In order to get GS with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9-A (details are described in “Materials and methods”) and 0.1% (w/v) lactose were selected as culture medium and inducer respectively. Recombinant GS was also highly expressed (84% of total protein) and totally soluble in M9-A and the specific activity of the recombinant GS is 6.2 U/mg which is approximate to that (6.4 U/mg) induced in LB in the presence of 10 mM Mn2+ at optimal pH 7.5. The activity is markedly higher activated by Mn2+ than that by other nine bivalent cations. Furthermore, M9-B (5 μM Mn2+ was added into M9-A) was used to culture the recombinant strain and theanine-forming activity of the recombinant GS induced in M9-B was improved 20% (up to 7.6 U/mg). Finally, theanine production experiment coupled with yeast fermentation system was carried out in a 1.0 ml reaction system with 0.1 mg crude GS from M9-B or M9-A, and the yield of theanine were 15.3 and 13.1 g/L by paper chromatography and HPLC, respectively.  相似文献   

20.
The tellurium oxyanion TeO32− has been used in the treatment of infectious diseases caused by mycobacteria. However, many pathogenic bacteria show tellurite resistance. Several tellurite resistance genes have been identified, and these genes mediate responses to diverse extracellular stimuli, but the mechanisms underlying their functions are unknown. To shed light on the function of KP-TerD, a 20.5 -kDa tellurite resistance protein from a plasmid of Klebsiella pneumoniae, we have determined its three-dimensional structure in solution using NMR spectroscopy. KP-TerD contains a β-sandwich formed by two five-stranded β-sheets and six short helices. The structure exhibits two negative clusters in loop regions on the top of the sandwich, suggesting that KP-TerD may bind metal ions. Indeed, thermal denaturation experiments monitored by circular dichroism and NMR studies reveal that KP-TerD binds Ca2+. Inductively coupled plasma-optical emission spectroscopy shows that the binding ratio of KP-TerD to Ca2+ is 1:2. EDTA (ethylenediaminetetraacetic acid) titrations of Ca2+-saturated KP-TerD monitored by one-dimensional NMR yield estimated dissociation constants of 18  and 200 nM for the two Ca2+-binding sites of KP-TerD. NMR structures incorporating two Ca2+ ions define a novel bipartite Ca2+-binding motif that is predicted to be highly conserved in TerD proteins. Moreover, these Ca2+-binding sites are also predicted to be present in two additional tellurite resistance proteins, TerE and TerZ. These results suggest that some form of Ca2+ signaling plays a crucial role in tellurite resistance and in other responses of bacteria to multiple external stimuli that depend on the Ter genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号