首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Retinal pigment epithelial (RPE) cells play a dominant role in the development of proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal reattachment surgery. Several studies have shown that platelet-derived growth factor (PDGF) exhibits chemotaxis and proliferation effects on RPE cells in PVR. In this study, the inhibitory effect of lycopene on PDGF-BB-induced ARPE19 cell migration is examined. In electric cell-substrate impedance sensing (ECIS) and Transwell migration assays, significant suppression of PDGF-BB-induced ARPE19 cell migration by lycopene is observed. Cell viability assays show no cytotoxicity of lycopene on RPE cells. Lycopene shows no effect on ARPE19 cell adhesion and is found to inhibit PDGF-BB-induced tyrosine phosphorylation and the underlying signaling pathways of PI3K, Akt, ERK and p38 activation. However, PDGF-BB and lycopene show no effects on JNK activation. Taken together, our results demonstrate that lycopene inhibits PDGF-BB-induced ARPE19 cell migration through inhibition of PI3K/Akt, ERK and p38 activation.  相似文献   

3.
We investigated the role of galectin-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptotic death in human breast carcinoma BT549 cells. We observed that parental galectin-3 null BT549 cells (BT549(par)) as well as control vector transfected (BT549(neo)) cells were resistant to TRAIL, while galectin-3 cDNA-transfected BT549 cells (BT549(gal-3)) were sensitive to TRAIL. Data from flow cytometry and immunoblotting analyses reveal that reconstitution of galectin-3 promoted cell death and PARP cleavage as well as caspase (-8, -9, and -3) activation during TRAIL treatment. However, unlike TRAIL treatment, galectin-3 transfectants were resistant to UV-B-induced PARP cleavage. Data from cDNA array analysis show that galectin-3 did not significantly enhance or reduce any apoptosis-related gene expression. Moreover, although galectin-3 restored pre-mRNA splicing activity and resulted in elevation of FLIPs protein, experiments with FLIPs cDNA-transfected cells show that overexpression of FLIPs did not sensitize cells to TRAIL. Interestingly, BT549(gal-3) cells demonstrated a approximately 2-fold increase in total glutathione content as well as a approximately 5-fold increase in GSSG content in comparison to BT549(par) and BT549(neo) cells, suggesting that galectin-3 overexpression may alter intraceullular oxidation/reduction reactions affecting the metabolism of glutathione and other thiols. In addition, galectin-3 overexpression inactivated Akt by dephosphorylation. Finally, overexpression of constitutively activated Akt protected BT549(gal-3) cells from TRAIL-induced cytotoxicity. Taken together, our data suggest that galectin-3-enhanced TRAIL-induced cytotoxicity is mediated through dephosphorylation of Akt, possibly through a redox-dependent process.  相似文献   

4.
Lysosome Associated Membrane Protein-1 (LAMP1), which lines the lysosomes, is often found to be expressed on surface of metastatic cells. We previously demonstrated that its surface expression on B16 melanoma variants correlates with metastatic potential. To establish the role of cell surface LAMP1 in metastasis and to understand the possible mechanism by which it facilitates lung colonization, LAMP1 was downregulated in high metastatic B16F10 cells using shRNAs cloned in a doxycycline inducible vector. This also resulted in significantly decreased LAMP1 on the cell surface. Being a major carrier of poly-N-acetyllactosamine (polyLacNAc) substituted β1,6 branched N-oligosaccharides, the high affinity ligands for galectin-3, LAMP1 down regulation also resulted in appreciably decreased binding of galectin-3 to the cell surface. LAMP1 has been shown to bind to Extracellular Matrix (ECM), Basement Membrane (BM) components and also to galectin-3 (via carbohydrates) which is known to get incorporated into the ECM and BM. Although, LAMP1 downregulation had a marginal effect on cellular spreading and motility on fibronectin and matrigel, it significantly altered the same on galectin-3, and ultimately leading to notably reduced lung metastasis. The results thus for the first time provide direct evidence that cell surface LAMP1 facilitates lung metastasis by providing ligands for galectin-3 which has been shown to be expressed in highest amounts on lungs and constitutively on its vascular endothelium.  相似文献   

5.
Mitf has been reported to play a crucial role in regulating the differentiation of pigment cells in homeothermal animals, i.e. the melanocytes and the retinal pigment epithelium (RPE). However, less is known about the functions of Mitf in the developing RPE. To elucidate such functions, we introduced wild-type and dominant-negative Mitf expression vectors into chick optic vesicles by electroporation. Over-expression of wild-type Mitf altered neural retina cells to become RPE-like and repressed the expression of neural retina markers in vivo. In contrast, dominant-negative Mitf inhibited pigmentation in the RPE. The percentage of BrdU-positive cells decreased during normal RPE development, which was followed by Mitf protein expression. The percentage of BrdU-positive cells decreased in the wild-type Mitf-transfected neural retina, but increased in the dominant-negative Mitf-transfected RPE. p27kip1, one of the cyclin-dependent kinase inhibitors, begins to be expressed in the proximal region of the RPE at stage 16. Transfection of wild-type Mitf induced expression of p27kip1, while transfection of dominant-negative Mitf inhibited p27kip1 expression. We found that Mitf was associated with the endogenous p27kip1 5′ flanking region. These results demonstrate for the first time “in vivo” that Mitf uniquely regulates both differentiation and cell proliferation in the developing RPE.  相似文献   

6.
Retinal pigment epithelium (RPE) plays a critical role in vertebrate vision by providing functional and structural support to the retina. Degeneration of RPE by cumulative oxidative stresses or acute injury frequently results in retinal degenerative diseases, notably age-related macular degeneration (AMD). Moreover, it has been shown that phosphorylation-mediated inactivation of PTEN (phosphatase and tensin homolog) in RPE is closely linked to AMD-like retinal degeneration in mice [1]. In this study, we used AMD mouse models, in which chemokine (C–C motif) ligand 2 (Ccl2) or chemokine (C–C motif) receptor 2 (Ccr2) were genetically ablated, to examine mechanisms linking reactive oxygen species (ROS) to phosphorylation/inactivation of PTEN in RPE. We found that ROS levels were increased in these RPE cells in association with phosphorylation/inactivation of PTEN. Both PTEN phosphorylation/inactivation and consequent Akt activation in the RPE of AMD model mice were inhibited by antioxidant treatment, indicating a functional role for elevated intracellular ROS. We further discovered that PTEN phosphorylation in oxidatively stressed RPE was repressed by a phosphoinositide 3-kinase (PI3K) inhibitor, but not by an Akt inhibitor. Taken together, these results suggest that ROS-activated PI3K potentiates AMD-related RPE pathogenesis through phosphorylation/inactivation of PTEN.  相似文献   

7.
Galectins (gal), a family of soluble beta-galactoside-binding proteins present at the cell surface, are involved in cancer progression and metastasis. Here we investigated the expression of several galectins in normal (PrEC), benign (BPH-1), and malignant (LNCaP) prostate epithelial cells and found that all galectins, except gal1 are differentially expressed. The gal3, 7, and 9 are highly expressed in PrEC, but not in LNCaP cells. Out of seven isoforms of gal8, the proto isoform gal8e and our newly discovered proto isoform gal8g were upregulated in LNCaP cells compared to PrEC, whereas the two tandem-repeat isoforms gal8a and gal8b were equally expressed in these cells. To determine if the silencing of gal3 in LNCaP cells was due to promoter methylation, LNCaP cells were treated with azacytidine. Azacytidine treatment induced the expression of gal3 in LNCaP cells, indicating that the gal3 gene was silenced by methylation of its promoter. To examine further, we evaluated cytosine methylation in gal3 promoter in LNCaP, normal prostate and placenta DNA and observed that it is highly methylated in LNCaP but not in normal cells and azacytidine completely abolished this methylation in LNCaP cells. Similar to prostate cancer cells, gal3 promoter was highly methylated in human prostate cancer tissue but not in normal tissue. To our knowledge, this is the first report indicating that gal3 expression is regulated by promoter methylation in LNCaP cells and prostate tumors. The methylation of gal3 promoter may constitute a powerful tool for early diagnosis of prostate cancer.  相似文献   

8.
Dysfunction or progressive degeneration of retinal pigment epithelium (RPE) contributes in the initial pathogenesis of age-related macular degeneration (AMD) causing irreversible vision loss, which makes RPE the prime target of the disease. The present study aimed to identify compounds to protect 4-hydroxynonenal (4-HNE)-induced RPE cell death by inhibiting NADPH oxidase 4 (NOX4) activity, not just as free radical scavengers, using ARPE-19, a human adult retinal pigment epithelial cell line, as a RPE representative. Novel thirty-two 6-ureido/thioureido-2,4,5-trimethylpyridin-3-ol derivatives 17 were synthesized and tested. We found that there was a strong correlation between level of protective effect of compounds 17 against 4-HNE-induced APRE-19 cell death and that of inhibitory activity against 4-HNE-induced superoxide production, and that most of the compounds 17 showed minimal DPPH radical scavenging activity. Compound 1728 showed the best protective activity against 4-HNE-induced superoxide production (79.5% inhibition) and cell death (85.1% recovery) at 10?μM concentration, which was better than that of VAS2870, a NOX2/4 inhibitor. In addition, compound 1728 blocked 4-HNE-induced apoptosis of ARPE-19 cells in a concentration-dependent manner. The results indicate that compound 1728 may be a lead compound to develop AMD therapeutics.  相似文献   

9.
10.
11.
12.
Summary In vertebrate tissue development a given cell differentiation pathway is usually associated with a pattern of expression of a specific set of cytoskeletal proteins, including different intermediate filament (IF) and junctional proteins, which is identical in diverse species. The retinal pigment epithelium (RPE) is a layer of polar cells that have very similar morphological features and practically identical functions in different vertebrate species. However, in biochemical and immunolocalization studies of the cytoskeletal proteins of these cells we have noted remarkable interspecies differences. While chicken RPE cells contain only IFs of the vimentin type and do not possess desmosomes and desmosomal proteins RPE cells of diverse amphibian (Rana ridibunda, Xenopus laevis) and mammalian (rat, guinea pig, rabbit, cow, human) species express cytokeratins 8 and 18 either as their sole IF proteins, or together with vimentin IFs as in guinea pig and a certain subpopulation of bovine RPE cells. Plakoglobin, a plaque protein common to desmosomes and the zonula adhaerens exists in RPE cells of all species, whereas desmoplakin and desmoglein have been identified only in RPE desmosomes of frogs and cows, including bovine RPE cell cultures in which cytokeratins have disappeared and vimentin IFs are the only IFs present. These challenging findings show that neither cytokeratin IFs nor desmosomes are necessary for the establishment and function of a polar epithelial cell layer and that the same basic cellular architecture can be achieved by different programs of expression of cytoskeletal proteins. The differences in the composition of the RPE cytoskeleton further indicate that, at least in this tissue, a specific program of expression of IF and desmosomal proteins is not related to the functions of the RPE cell, which are very similar in the various species.  相似文献   

13.
In the following experiments, we sought to understand the triggering mechanism which propels galectin-3 to be secreted into the extracellular compartment from its intracellular stores in breast carcinoma cells. We also wanted to analyze in greater details the role of galectin-3 in cellular adhesion and spreading. To do this, we made use of two pairs of breast carcinoma cell lines where one of the pair has high expression of galectin-3 and the other low expression of the lectin. We determined that galectin-3 secreted into the conditioned medium of sub-confluent and spread cells in culture was quite low, almost negligible. However, once the cells were detached and rounded up, a mechano-sensing mechanism triggered the rapid secretion of galectin-3 into the conditioned medium. The secretion was constitutive as long as the cells remained detached. Galectin-3 was shown to be actively taken up from the conditioned medium by spreading cells. The cells which express and secrete high levels of galectin-3 adhered and spread much faster on plastic than those with reduced expression. The uptake of galectin-3 according to our data was important in cell spreading because if this process was compromised significantly, cells failed to spread. The data suggested that galectin-3 uptake modulates the adhesion plaques in that cells which express high levels of galectin-3 have thin-dot like plaques that may be suited for rapid adhesion and spreading while cells in which galectin-3 expression is reduced or knocked-down, have thick and elongated plaques which may be suited for a firmer adhesion to the substratum. Recombinant galectin-3 added exogenously reduced the thickness of the adhesion plaques of tumor cells with reduced galectin-3 expression. Taken together, the present data suggest that galectin-3 once externalized, is a powerful modulator of cellular adhesion and spreading in breast carcinoma cells.  相似文献   

14.
Arp2/3 complex is a key actin filament nucleator that assembles branched actin networks in response to cellular signals. The activity of Arp2/3 complex is regulated by both activating and inhibitory proteins. Coronins make up a large class of actin-binding proteins previously shown to inhibit Arp2/3 complex. Although coronins are known to play a role in controlling actin dynamics in diverse processes, including endocytosis and cell motility, the precise mechanism by which they regulate Arp2/3 complex is unclear. We conducted a detailed biochemical analysis of budding yeast coronin, Crn1, and found that it not only inhibits Arp2/3 complex but also activates it. We mapped regions required for activation and found that Crn1 contains a sequence called CA, which is conserved in WASp/Scar proteins, the prototypical activators of Arp2/3 complex. Point mutations in CA abolished activation of Arp2/3 complex by Crn1 in vitro. Confocal microscopy and quantitative actin patch tracking showed that these mutants had defective endocytic actin patch dynamics in Saccharomyces cerevisiae, indicating that activation of Arp2/3 complex by coronin is required for normal actin dynamics in vivo. The switch between the dual modes of regulation by Crn1 is controlled by concentration, and low concentrations of Crn1 enhance filament binding by Arp2/3 complex, whereas high concentrations block binding. Our data support a direct tethering recruitment model for activation of Arp2/3 complex by Crn1 and suggest that Crn1 indirectly inhibits Arp2/3 complex by blocking it from binding actin filaments.  相似文献   

15.

Background

Cryoballoon-based pulmonary vein isolation (PVI) is a treatment option for atrial fibrillation (AF). Left atrial volume (LAV) and left atrial volume index (LAVi) are important parameters for long term success of PVI. Galectin-3 (Gal-3) and neutrophil to lymphocyte ratio (N/L ratio) are biomarkers to demonstrate the cardiac fibrosis and remodelling.

Methods

50 patients with symptomatic PAF despite ≥1 antiarrhythmic drug(s), who underwent PVI were enrolled. LAV, LAVi, Gal-3 and N/L ratio were calculated before ablation and after ablation at 6 and 12 months. According to AF recurrence patients were divided into two groups, recurrent AF (n?=?14) and non-recurrent AF (n?=?36).

Results

In both groups (recurrent and non-recurrent), initial and 12 months follow-up LAV values were 41.39?±?18.13?ml and 53.24?±?22.11?ml vs 48.85?±?12.89?ml and 42.08?±?13.85 (p?=?0.037). LAVi were 20.9?±?8.91 ml/m2 and 26.85?±?11.28 ml/m2 vs 25.36?±?6.21 and 21.87?±?6.66 (p?=?0.05) for recurrent and non-recurrent AF groups, respectively. In both groups PVI had no significant effect on serum Gal-3 levels and N/L ratio during 12 months follow-up. The comparison between two groups at the end of 12th month showed Gal-3 values of 6.66?±?4.09?ng/ml and 6.02?±?2.95?ng/ml (p?=?0.516), N/L ratio values of 2.28?±?1.07 103/μl and 1.98?±?0.66?103/μl (p?=?0.674).

Conclusion

LAV and LAVi are useful to predict the remodelling of the left atrium and AF recurrence after cryoballoon-based PVI. However, biomarkers such as Gal-3 and N/L ratio are not associated with AF recurrence.  相似文献   

16.
17.
Transformation of vinca cells was performed by the co-cultivation of cell-wall regenerated vinca protoplasts withAgrobacterium tumefaciens. Using thisin vitro and single cell system, attachment of the bacteria to the surface of vinca cells was observed by scanning electron microscopy (SEM). Figures of the bacteria polarly binding to the plant cell wall were often observed. AsEscherichia coli does not attach to the plant cells at all, the observed attachment ofA. tumefaciens is suggested as a characteristic feature in crown gall induction. Even though no evidence of transformation was obtained by the co-cultivation methods, a similar attachment was observed in the cell-wall regenerated protoplasts of rice. The bacteria also attached to the surface of isolated mesophyll cells of asparagus and root hairs of rice. From these observation, we concluded that the attachment is not the limiting step of crown gall induction byA. tumefaciens in monocotyledonous plants. Extracellular fibrils like pili were observed with a few strains of A.tumefaciens for the first time. These fibrils were observed regardless of their ability of attachment and infectivity.  相似文献   

18.
The anti-apoptotic effect of a chloride-bicarbonate exchange blocker has been previously examined in endothelial cells and cardiomyocytes. However, the anti-apoptotic effects of this blocker on epithelial cells and the mechanism of the anti-apoptotic effect remain unknown. We examined the anti-apoptotic effects of a chloride-bicarbonate exchange blocker in a renal epithelial cell line (MDCK cells). Changes in the expression of bcl-2 family proteins, which are known to have anti-apoptotic effects, were also examined. Staurosporine was used to induce apoptotic cell death in the MDCK cells. Staurosporine treatment was sufficient to induce apoptotic cell death, detected by propidium iodide and DNA ladder formation. A chloride-bicarbonate exchange blocker was added 24 h before the staurosporine treatment and during treatment. The chloride-bicarbonate exchange blocker inhibited the staurosporine-induced apoptosis in the MDCK cells in a dose-dependent manner. The expression of bcl-2 family gene products was detected by RT-PCR and Western blotting. No changes in the expression of Bax, Bid and Bik (pro-apoptotic proteins), or Bcl-2 (an anti-apoptotic protein) were detected. However, Mcl-1 expression was reduced by the staurosporine treatment, and this reduction was recovered when the chloride-bicarbonate exchange blocker was added. LY294002, a PI 3-kinase inhibitor, partially inhibited this anti-apoptotic effect. In conclusion, chloride-bicarbonate exchange blockers appear to offer cell-protective effects via Mcl-1 up-regulation.  相似文献   

19.
The Retinal Pigment Epithelium (RPE) forms the primary site of pathology in several blinding retinopathies. RPE cultures are being continuously refined so that dynamic disease processes in this important monolayer can be faithfully studied outside the eye over longer periods. The RPE substrate, which mimics the supportive Bruch’s membrane (BrM), plays a key role in determining how well in-vitro cultures recapitulate native RPE cells. Here, we evaluate how two different types of BrM substrates; (1) a commercially-available polyester transwell membrane, and (2) a novel electrospun scaffold developed in our laboratory, could support the generation of realistic RPE tissues in culture. Our findings reveal that both substrates were capable of supporting long-lasting RPE monolayers with structural and functional specialisations of in-situ RPE cells. These cultures were used to study autofluorescence and barrier formation, as well as activities such as outer-segment internalisation/trafficking and directional secretion of key proteins; the impairment of which underlies retinal disease. Hence, both substrates fulfilled important criteria for generating authentic in-vitro cultures and act as powerful tools to study RPE pathophysiology. However, RPE grown on electrospun scaffolds may be better suited to studying complex RPE-BrM interactions such as the formation of drusen-like deposits associated with early retinal disease.  相似文献   

20.
Engineered culture substrates have proven invaluable for investigating the role of cell and extracellular matrix geometry in governing cell behavior. While the mechanisms relating geometry to phenotype are complex, it is clear that the actin cytoskeleton plays a key role in integrating geometric inputs and transducing these cues into intracellular signals that drive downstream biology. Here, we review recent progress in elucidating the role of the cell and matrix geometry in regulating actin cytoskeletal architecture and mechanics. We address new developments in traditional two-dimensional culture paradigms and discuss efforts to extend these advances to three-dimensional systems, ranging from nanotextured surfaces to microtopographical systems (e.g. channels) to fully three-dimensional matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号