首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snake venoms are complex mixtures of proteins among which both basic and acidic phospholipases A2 (PLA2s) can be found. Basic PLA2s are usually responsible for major toxic effects induced by snake venoms, while acidic PLA2s tend to have a lower toxicity. A novel PLA2, here named PnPLA2, was purified from the venom of Porthidium nasutum by means of RP-HPLC on a C18 column. PnPLA2 is an acidic protein with a pI of 4.6, which migrates as a single band under both non-reducing and reducing conditions in SDS-PAGE. PnPLA2 had a molecular mass of 15,802.6 Da, determined by ESI-MS. Three tryptic peptides of this protein were characterized by HPLC-nESI-MS/MS, and N-terminal sequencing by direct Edman degradation showing homology to other acidic PLA2s from viperid venoms. PnPLA2 displayed indirect hemolytic activity in agarose erythrocyte-egg yolk gels and bactericidal activity against Staphylococcus aureus in a dose-dependent manner, with a MIC and MBC of 32 μg/mL. In addition, PnPLA2 showed a potent inhibitory effect on platelet aggregation with doses up to 40 μg/mL. This acidic PLA2, in contrast to basic enzymes isolated from other viperid snake venoms, was not cytotoxic to murine skeletal muscle myoblasts C2C12. This is the first report on a bactericidal protein of Porthidium nasutum venom.  相似文献   

2.
Catalytically inactive phospholipase A(2) (PLA(2)) homologues play key roles in the pathogenesis induced by snake envenomation, causing extensive tissue damage via a mechanism still unknown. Although, the amino acid residues directly involved in catalysis are conserved, the substitution of Asp49 by Arg/Lys/Gln or Ser prevents the binding of the essential calcium ion and hence these proteins are incapable of hydrolyzing phospholipids. In this work, the crystal structure of a Lys49-PLA(2) homologue from Bothrops brazili (MTX-II) was solved in two conformational states: (a) native, with Lys49 singly coordinated by the backbone oxygen atom of Val31 and (b) complexed with tetraethylene glycol (TTEG). Interestingly, the TTEG molecule was observed in two different coordination cages depending on the orientation of the nominal calcium-binding loop and of the residue Lys49. These structural observations indicate a direct role for the residue Lys49 in the functioning of a catalytically inactive PLA(2) homologue suggesting a contribution of the active site-like region in the expression of pharmacological effects such as myotoxicity and edema formation. Despite the several crystal structures of Lys49-PLA(2) homologues already determined, their biological assembly remains controversial with two possible conformations. The extended dimer with the hydrophobic channel exposed to the solvent and the compact dimer in which the active site-like region is occluded by the dimeric interface. In the MTX-II crystal packing analysis was found only the extended dimer as a possible stable quaternary arrangement.  相似文献   

3.
Protobothrops flavoviridis venom contains plural phospholipase A(2) (PLA(2)) isozymes. A [Lys(49)]PLA(2) called BPII induced cell death in human leukemia cells. PLA2, an [Asp(49)]PLA(2) that has much stronger lipolytic activity than BPII, failed to induce cell death. BPII-treated cells showed morphological changes, DNA fragmentation, and nuclear condensation. This BPII-induced apoptotic cell death was neither inhibited by inhibitors of caspases 3 and 6 nor accompanied by activation of procaspase 3, indicating that BPII-induced cell death is caspase independent. Since inactive p-bromophenacylated BPII induced cell death, BPII-induced apoptotic cell death is independent of PLA(2) lipolytic activity. Rapid externalization of phosphatidylserine in BPII-treated cells was observed for fluorescein isothiocyanate (FITC)-labeled annexin V. In the cells treated with BPII, this spread over the cell membranes, implying that the cell toxicity of BPII is mediated via its cell-surface receptor.  相似文献   

4.
Myotoxicity and membrane damage play a central role in the life-threatening effects of the viper envenomation. Myotoxins are an important part of the viper venomics. A Ser49 PLA?-like myotoxin from the venom of Vipera ammodytes meridionalis, the most venomous snake in Europe, was crystallized and its three-dimensional structure determined. The toxin is devoid of phospholipolytic activity. The structure demonstrates a formation of dimers. In the dimers functionally important peptide segments, located on the protein surface, point in the same direction which can strengthen the pharmacological effect. This supports the hypothesis about the physiological importance of the toxin oligomerization for the myotoxicity and membrane damage. The crystallographic model revealed that the structural determinants of myotoxicity (a positively charged C-terminal region and a hydrophobic knuckle) are fully exposed on the protein surface and accessible for interactions with target membranes. Distortion of the catalytic site region explains the absence of enzymatic activity. The structure reveals anion-binding sites which can be considered as possible sites of interactions of the toxin with a negatively charged membrane surface. The high structural similarity of the Ser49 myotoxin and Asp49 PLA? from the same venom suggests an evolutionary relationship: probably, the Ser49 myotoxin is a product of evolution of the catalytically active phospholipase A?. The first toxin lost the enzymatic activity which is not necessary for the myotoxicity but preserved the cytotoxicity and membrane damaging activity as important components of the venom toxicity.  相似文献   

5.
The mitogen-activated protein kinase (MAPK) p38α is a key regulator in many cellular processes, whose activity is tightly regulated by upstream kinases, phosphatases and other regulators. Transforming growth factor-β activated kinase 1 (TAK1) is an upstream kinase in p38α signaling, and its full activation requires a specific activator, the TAK1-binding protein (TAB1). TAB1 was also shown to be an inducer of p38α’s autophosphorylation and/or a substrate driving the feedback control of p38α signaling. Here we determined the complex structure of the unphosphorylated p38α and a docking peptide of TAB1, which shows that the TAB1 peptide binds to the classical MAPK docking groove and induces long-range conformational changes on p38α. Our structural and biochemical analyses suggest that TAB1 is a reasonable substrate of p38α, yet the interaction between the docking peptide and p38α may not be sufficient to trigger trans-autophosphorylation of p38α.  相似文献   

6.
RhoA, a member of the Rho sub-family of small GTPases, plays a significant signaling role in cell morphogenesis, migration, neuronal development, cell division and adhesion. So far, 4 structures of RhoA:GDP/GTP analogs and 14 structures of RhoA in complex with other proteins have been reported. All RhoA:GDP/GTP analog complexes have been crystallized in primitive lattices and RhoA is monomeric. This is the first time a RhoA:GTP analog complex has been crystallized as a dimer in a centered lattice. The present structure reveals structural differences in the switch-I (residues 28?C42) and switch-II (residues 61?C66) regions, which play important roles in interactions with downstream targets to transduce signals, when compared to the previously reported structures.  相似文献   

7.
Guo P  Su Y  Cheng Q  Pan Q  Li H 《Carbohydrate research》2011,(7):986-990
The 1:1 inclusion complex of β-cyclodextrin and p-aminobenzoic acid was prepared and characterized by TG-DTA. The crystal structure of the complex was solved directly from powder X-ray diffraction data using the direct space approach and refined using Rietveld refinement techniques. The complex crystallizes in monoclinic P21 space group, with unit cell parameters a = 20.7890 ?, b = 10.2084 ?, c = 15.1091 ?, β = 110.825°, V = 2997 ?3. The amino group is located at the wide side of the β-cyclodextrin cavity, forming hydrogen bonds with β-cyclodextrin, and the carboxyl group is located at the narrow side. The crystallographic data obtained from powder diffraction data were compared with the single crystallographic data, and the result shows that solving crystal structure of cyclodextrins inclusion complexes of such complexity is accessible to powder diffractionists to some extent.  相似文献   

8.
Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α-helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties.  相似文献   

9.
Mammalian genomes encode genes for more than 30 phospholipase A2s (PLA2s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA2s (sPLA2s), Ca2+-dependent cytosolic PLA2s (cPLA2s), Ca2+-independent PLA2s (iPLA2s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA2s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA2 and iPLA2 families and the extracellular sPLA2 family are recognized as the “big three”. From a general viewpoint, cPLA2α (the prototypic cPLA2) plays a major role in the initiation of arachidonic acid metabolism, the iPLA2 family contributes to membrane homeostasis and energy metabolism, and the sPLA2 family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA2 family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA2 and sPLA2 families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA2 enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA2 genes. This review focuses on current understanding of the emerging biological functions of PLA2s and related enzymes.  相似文献   

10.
Snakebite envenoming is an important public health problem in many tropical and subtropical countries, and is considered a neglected tropical disease by the World Health Organization. Most severe cases are inflicted by species of the families Elapidae and Viperidae, and lead to a number of systemic and local effects in the victim. One of the main problems regarding viperidic accidents is prominent local tissue damage whose pathogenesis is complex and involves the combined actions of a variety of venom components. Phospholipases A2 (PLA2s) are the most abundant muscle-damaging components of these venoms. Herein, we report functional and structural studies of PrTX-I, a Lys49-PLA2 from Bothops pirajai snake venom, and the influence of rosmarinic acid (RA) upon this toxin''s activities. RA is a known active component of some plant extracts and has been reported as presenting anti-myotoxic properties related to bothopic envenomation. The myotoxic activity of Lys49-PLA2s is well established in the literature and although no in vivo neurotoxicity has been observed among these toxins, in vitro neuromuscular blockade has been reported for some of these proteins. Our in vitro studies show that RA drastically reduces both the muscle damage and the neuromuscular blockade exerted by PrTX-I on mice neuromuscular preparations (by ∼80% and ∼90%, respectively). These results support the hypothesis that the two effects are closely related and lead us to suggest that they are consequences of the muscle membrane-destabilizing activity of the Lys49-PLA2. Although the C-terminal region of these proteins has been reported to comprise the myotoxic site, we demonstrate by X-ray crystallographic studies that RA interacts with PrTX-I in a different region. Consequently, a new mode of Lys49-PLA2 inhibition is proposed. Comparison of our results with others in the literature suggests possible new ways to inhibit bothropic snake venom myotoxins and improve serum therapy.  相似文献   

11.
β-Fructofuranosidases belonging to glycoside hydrolase family (GH) 32 are enzymes that hydrolyze sucrose. Some GH32 enzymes also catalyze transfructosylation to produce fructooligosaccharides. We found that Aspergillus kawachii IFO 4308 β-fructofuranosidase (AkFFase) produces fructooligosaccharides, mainly 1-kestose, from sucrose. We determined the crystal structure of AkFFase. AkFFase is composed of an N-terminal small component, a β-propeller catalytic domain, an α-helical linker, and a C-terminal β-sandwich, similar to other GH32 enzymes. AkFFase forms a dimer, and the dimerization pattern is different from those of other oligomeric GH32 enzymes. The complex structure of AkFFase with fructose unexpectedly showed that fructose binds both subsites ?1 and +1, despite the fact that the catalytic residues were not mutated. Fructose at subsite +1 interacts with Ile146 and Glu296 of AkFFase via direct hydrogen bonds.  相似文献   

12.
A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol. A model is proposed in which MGL undergoes conformational and electrostatic changes during the catalytic cycle ultimately resulting in its dissociation from the membrane upon completion of the cycle. In addition, the study outlines a successful approach to transform membrane associated proteins, which tend to aggregate upon purification, into a monomeric and soluble form.  相似文献   

13.
Mammalian lysosomal sialidase exists as an enzyme complex with β-galactosidase and carboxypeptidase, so-called “protective protein.” In this article, we report that chicken sialidase also occurs as a complex with β-galactosidase and protective protein. The purified sialidase complex had a molecular weight > 700 kDa on gel filtration and showed four protein components of 76, 65, 54 and 48 kDa on SDS-PAGE under nonreducing conditions. N-Terminal sequences of the 65- and 48-kDa proteins were homologous to human lysosomal β-galactosidase and protective protein precursor, respectively. The purified sialidase complex also had carboxypeptidase activity. Both sialidase and carboxypeptidase activities were precipitated together by an antibody against chicken β-galactosidase. The complex reversibly dissociated into 120-kDa β-galactosidase dimer and 100-kDa carboxypeptidase dimer at pH 7.5, but the sialidase irreversibly inactivated during the depolymerization. These findings indicate that chicken sialidase exists as a multienzyme complex, by which the sialidase activity appears to be stabilized.  相似文献   

14.
The PLA2 and crotapotin subunits of crotoxin from Crotalus durissus cascavella venom were purified by a combination of HPLC molecular exclusion (Protein Pack 300SW column) and reverse-phase HPLC (RP-HPLC). Tricine SDS—PAGE showed that the PLA2 and crotapotins migrated as single bands with estimated molecular masses of 15 and 9 kDa, respectively. The amino acid composition of the PLA2 showed the presence of 14 half-cysteines and a high content of basic residues (Lys, Arg, His), whereas the crotapotins were rich in hydrophobic, negatively charged residues and half-cysteines. The PLA2 showed allosteric behavior, with maximal activity at pH 8.3 and 35–40°C. The C. d. cascavella PLA2 required Ca2+ for activity, but was inhibited by Cu2+ and Zn2+ and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. Crotapotin (F3) and heparin inhibited the catalytic activity of the PLA2 by acting as allosteric inhibitors.  相似文献   

15.
The PLA2 and crotapotin subunits of crotoxin from Crotalus durissus cascavella venom were purified by a combination of high-performance liquid chromatography (HPLC) molecular exclusion (Protein Pack 300SW column) and reverse-phase HPLC (RP-HPLC). Tricine SDS-PAGE showed that the PLA2 and crotapotins migrated as single bands with estimated molecular masses of 15 and 9 kDa, respectively. The amino acid composition of the PLA2 showed the presence of 14 half-cysteines and a high content of basic residues (Lys, Arg, His), whereas the crotapotins were rich in hydrophobic, negatively charged residues and half-cysteines. The PLA2 showed allosteric behavior, with maximal activity at pH 8.3 and 35–40°C. C. d. cascavella PLA2 required Ca2+ for activity but was inhibited by Cu2+ and Zn2+ and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. Crotapotin (F3) and heparin inhibited the catalytic activity of the PLA2 by acting as allosteric inhibitors.  相似文献   

16.
Crystal of Russell Viper venom phospholipase A(2) complexed with an isoquinoline alkaloid, berberine from a herbaceous plant Cardiospermum halicacabum, was prepared and its structure was solved by X-ray crystallography. The crystal diffracted up to 1.93? and the structure solution clearly located the position of berberine in the active site of the enzyme. Two hydrogen bonds, one direct and the other water mediated, were formed between berberine and the enzyme. Gly 30 and His 48 made these two hydrogen bonds. Additionally, the hydrophobic surface of berberine made a number of hydrophobic contacts with side chains of neighboring amino acids. Surface Plasmon Resonance studies revealed strong binding affinity between berberine and phospholipase A(2). Enzyme inhibition studies proved that berberine is a competitive inhibitor of phospholipase A(2). It was inferred that the isoquinoline alkaloid, berberine, is a potent natural inhibitor of phospholipaseA(2).  相似文献   

17.
18.
Interferon (IFN)-λ1 [also known as interleukin (IL)-29] belongs to the recently discovered group of type III IFNs. All type III IFNs initiate signaling processes through formation of specific heterodimeric receptor complexes consisting of IFN-λR1 and IL-10R2. We have determined the structure of human IFN-λ1 complexed with human IFN-λR1, a receptor unique to type III IFNs. The overall structure of IFN-λ1 is topologically similar to the structure of IL-10 and other members of the IL-10 family of cytokines. IFN-λR1 consists of two distinct domains having fibronectin type III topology. The ligand-receptor interface includes helix A, loop AB, and helix F on the IFN site, as well as loops primarily from the N-terminal domain and inter-domain hinge region of IFN-λR1. Composition and architecture of the interface that includes only a few direct hydrogen bonds support an idea that long-range ionic interactions between ligand and receptor govern the process of initial recognition of the molecules while hydrophobic interactions finalize it.  相似文献   

19.
Arginine kinase (AK) is a key enzyme for energetic balance in invertebrates. Although AK is a well-studied system that provides fast energy to invertebrates using the phosphagen phospho-arginine, the structural details on the AK-arginine binary complex interaction remain unclear. Herein, we determined two crystal structures of the Pacific whiteleg shrimp (Litopenaeus vannamei) arginine kinase, one in binary complex with arginine (LvAK-Arg) and a ternary transition state analog complex (TSAC). We found that the arginine guanidinium group makes ionic contacts with Glu225, Cys271 and a network of ordered water molecules. On the zwitterionic side of the amino acid, the backbone amide nitrogens of Gly64 and Val65 coordinate the arginine carboxylate. Glu314, one of proposed acid–base catalytic residues, did not interact with arginine in the binary complex. This residue is located in the flexible loop 310–320 that covers the active site and only stabilizes in the LvAK-TSAC. This is the first binary complex crystal structure of a guanidine kinase in complex with the guanidine substrate and could give insights into the nature of the early steps of phosphagen biosynthesis.  相似文献   

20.
Highlights? The 3D structure of PKCι in complex with a peptide from Par-3 is determined ? PKCι does not need phosphorylation of Thr402 in its activation loop for its activity ? aPKCs do not need a priming kinase for their activations ? The PKCι/Par-3 structure reveals a unique substrate recognition patterns for aPKCs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号