首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pleckstrin homology (PH) domains are protein modules of around 120 amino acids found in many proteins involved in cellular signaling. Certain PH domains drive signal-dependent membrane recruitment of their host proteins by binding strongly and specifically to lipid second messengers produced by agonist-stimulated phosphoinositide 3-kinases (PI 3-Ks). We describe X-ray crystal structures of two different PH domains bound to Ins(1,3,4,5)P4, the head group of the major PI 3-K product PtdIns(3,4,5)P3. One of these PH domains (from Grp1) is PtdIns(3,4,5)P3 specific, while the other (from DAPP1/PHISH) binds strongly to both PtdIns(3,4,5)P3 and its 5'-dephosphorylation product, PtdIns(3,4)P2. Comparison of the two structures provides an explanation for the distinct phosphoinositide specificities of the two PH domains and allows us to predict the 3-phosphoinositide selectivity of uncharacterized PH domains.  相似文献   

2.
3.
The mechanisms underlying Golgi targeting and vesiculation are unknown, although the responsible phosphatidylinositol 4‐phosphate (PtdIns(4)P) ligand and four‐phosphate‐adaptor protein (FAPP) modules have been defined. The micelle‐bound structure of the FAPP1 pleckstrin homology domain reveals how its prominent wedge independently tubulates Golgi membranes by leaflet penetration. Mutations compromising the exposed hydrophobicity of full‐length FAPP2 abolish lipid monolayer binding and compression. The trafficking process begins with an electrostatic approach, phosphoinositide sampling and perpendicular penetration. Extensive protein contacts with PtdIns(4)P and neighbouring phospholipids reshape the bilayer and initiate tubulation through a conserved wedge with features shared by diverse protein modules.  相似文献   

4.
Structural basis for ubiquitin recognition by SH3 domains   总被引:1,自引:0,他引:1  
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.  相似文献   

5.
Pin1 contains an N-terminal WW domain and a C-terminal peptidyl-prolyl cis-trans isomerase (PPIase) domain connected by a flexible linker. To address the energetic and structural basis for WW domain recognition of phosphoserine (P.Ser)/phosphothreonine (P. Thr)- proline containing proteins, we report the energetic and structural analysis of a Pin1-phosphopeptide complex. The X-ray crystal structure of Pin1 bound to a doubly phosphorylated peptide (Tyr-P.Ser-Pro-Thr-P.Ser-Pro-Ser) representing a heptad repeat of the RNA polymerase II large subunit's C-terminal domain (CTD), reveals the residues involved in the recognition of a single P.Ser side chain, the rings of two prolines, and the backbone of the CTD peptide. The side chains of neighboring Arg and Ser residues along with a backbone amide contribute to recognition of P.Ser. The lack of widespread conservation of the Arg and Ser residues responsible for P.Ser recognition in the WW domain family suggests that only a subset of WW domains can bind P.Ser-Pro in a similar fashion to that of Pin1.  相似文献   

6.
Ceramide is generated in response to numerous stress-inducing stimuli and has been implicated in the regulation of diverse cellular responses, including cell death, differentiation, and insulin sensitivity. Recent evidence indicates that ceramide may regulate these responses by inhibiting the stimulus-mediated activation of protein kinase B (PKB), a key determinant of cell fate and insulin action. Here we show that inhibition of this kinase involves atypical PKCzeta, which physically interacts with PKB in unstimulated cells. Insulin reduces the PKB-PKCzeta interaction and stimulates PKB. However, dissociation of the kinase complex and the attendant hormonal activation of PKB were prevented by ceramide. Under these circumstances, ceramide activated PKCzeta, leading to phosphorylation of the PKB-PH domain on Thr(34). This phosphorylation inhibited phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) binding to PKB, thereby preventing activation of the kinase by insulin. In contrast, a PKB-PH domain with a T34A mutation retained the ability to bind PIP(3) even in the presence of a ceramide-activated PKCzeta and, as such, expression of PKB T34A mutant in L6 cells was resistant to inhibition by ceramide treatment. Inhibitors of PKCzeta and a kinase-dead PKCzeta both antagonized the inhibitory effect of ceramide on PKB. Since PKB confers a prosurvival signal and regulates numerous pathways in response to insulin, suppressing its activation by a PKCzeta-dependent process may be one mechanism by which ceramide promotes cell death and induces insulin resistance.  相似文献   

7.
Phosphoinositide binding by the pleckstrin homology domains of Ipl and Tih1   总被引:1,自引:0,他引:1  
The Ipl protein consists of a single pleckstrin homology (PH) domain with short N- and C-terminal extensions. This protein is highly conserved among vertebrates, and it acts to limit placental growth in mice. However, its biochemical function is unknown. The closest paralogue of Ipl is Tih1, another small PH domain protein. By sequence comparisons, Ipl and Tih1 define an outlying branch of the PH domain superfamily. Here we describe phosphatidylinositol phosphate (PIP) binding by these proteins. Ipl and Tih1 bind to immobilized PIPs with moderate affinity, but this binding is weaker and more promiscuous than that of prototypical PH domains from the general receptor for phosphoinositides (GRP1), phospholipase C delta1, and dual adaptor for phosphoinositides and phosphotyrosine 1. In COS7 cells exposed to epidermal growth factor, green fluorescent protein (GFP)-Ipl and GFP-Tih1 accumulate at membrane ruffles without clearing from the cytoplasm, whereas control GFP-GRP1 translocates rapidly to the plasma membrane and clears from the cytoplasm. Ras*-Ipl and Ras*-Tih1 fusion proteins both rescue cdc25ts Saccharomyces cerevisiae, but Ras*-Ipl rescues more efficiently in the presence of phosphatidylinositol 3-kinase (PI3K), whereas PI3K-independent rescue is more efficient with Ras*-Tih1. Site-directed mutagenesis defines amino acids in the beta1-loop1-beta2 regions of Ipl and Tih1 as essential for growth rescue in this assay. Thus, Ipl and Tih1 are bona fide PH domain proteins, with broad specificity and moderate affinity for PIPs.  相似文献   

8.
Pleckstrin homology (PH) domains are small protein modules known for their ability to bind phosphoinositides and to drive membrane recruitment of their host proteins. We investigated phosphoinositide binding (in vitro and in vivo) and subcellular localization, and we modeled the electrostatic properties for all 33 PH domains encoded in the S. cerevisiae genome. Only one PH domain (from Num1p) binds phosphoinositides with high affinity and specificity. Six bind phosphoinositides with moderate affinity and little specificity and are membrane targeted in a phosphoinositide-dependent manner. Although all of the remaining 26 yeast PH domains bind phosphoinositides very weakly or not at all, three were nonetheless efficiently membrane targeted. Our proteome-wide analysis argues that membrane targeting is important for only approximately 30% of yeast PH domains and is defined by binding to both phosphoinositides and other targets. These findings have significant implications for understanding the function of proteins that contain this common domain.  相似文献   

9.
Philip F  Guo Y  Scarlata S 《FEBS letters》2002,531(1):28-32
Since their discovery almost 10 years ago pleckstrin homology (PH) domains have been identified in a wide variety of proteins. Here, we focus on two proteins whose PH domains play a defined functional role, phospholipase C (PLC)-beta(2) and PLCdelta(1). While the PH domains of both proteins are responsible for membrane targeting, their specificity of membrane binding drastically differs. However, in both these proteins the PH domains work to modulate the activity of their catalytic core upon interaction with either phosphoinositol lipids or G protein activators. These observations show that these PH domains are not simply binding sites tethered onto their host enzyme but are intimately associated with their catalytic core. This property may be true for other PH domains.  相似文献   

10.
Pleckstrin homology (PH) domains may act as membrane localization modules through specific interactions with phosphoinositide phospholipids. These interactions could represent responses to second messengers, with scope for regulation by soluble inositol polyphosphates. A biosensor-based assay was used here to probe interactions between PH domains and unilamellar liposomes containing different phospholipids and to demonstrate specificity for distinct phosphoinositides. The dynamin PH domain specifically interacted with liposomes containing phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] and, more weakly, with liposomes containing phosphatidylinositol-4-phosphate [PI(4)P]. This correlates with phosphoinositide activation of the dynamin GTPase. The functional GTPase of a dynamin mutant lacking the PH domain, however, cannot be activated by PI(4,5)P2. The phosphoinositide-PH domain interaction can be abolished selectively by point mutations in the putative binding pocket predicted by molecular modelling and NMR spectroscopy. In contrast, the Bruton's tyrosine kinase (Btk)PH domain specifically bound liposomes containing phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3]: an interaction requiring Arg28, a residue found to be mutated in some X-linked agammaglobulinaemia patients. A rational explanation for these different specificities is proposed through modelling of candidate binding pockets and is supported by NMR spectroscopy.  相似文献   

11.
Woo JS  Suh HY  Park SY  Oh BH 《Molecular cell》2006,24(6):967-976
B30.2/SPRY domains are found in numerous proteins that cover a wide spectrum of biological functions, including regulation of cytokine signaling and innate retroviral restriction. Herein, we report the crystal structure of the B30.2/SPRY domain of a SPRY domain-containing SOCS box (SSB) protein, GUSTAVUS, complexed with a 20 amino acid peptide derived from the RNA helicase VASA, revealing how these domains recognize target proteins. The peptide-binding site is conformationally rigid and has a preformed pocket. The interaction between the pocket and the Asp-Ile-Asn-Asn-Asn-Asn sequence within the peptide accounts for the high-affinity binding between GUSTAVUS and VASA. This observation led to a facile identification of the Glu-Leu-Asn-Asn-Asn-Leu sequence as the recognition motif in a proapoptotic protein Par-4 for its interaction with a GUSTAVUS homolog, SSB-1. Ensuing analyses indicated that many B30.2/SPRY domains have a similar preformed pocket, which would allow them to bind multiple targets.  相似文献   

12.
Phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are lipid second messengers that regulate various cellular processes by recruiting a wide range of downstream effector proteins to membranes. Several pleckstrin homology (PH) domains have been reported to interact with PtdIns(3,4)P2 and PtdIns(3,4,5)P3. To understand how these PH domains differentially respond to PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals, we quantitatively determined the PtdIns(3,4)P2 and PtdIns(3,4,5)P3 binding properties of several PH domains, including Akt, ARNO, Btk, DAPP1, Grp1, and C-terminal TAPP1 PH domains by surface plasmon resonance and monolayer penetration analyses. The measurements revealed that these PH domains have significant different phosphoinositide specificities and affinities. Btk-PH and TAPP1-PH showed genuine PtdIns(3,4,5)P3 and PtdIns(3,4)P2 specificities, respectively, whereas other PH domains exhibited less pronounced specificities. Also, the PH domains showed different degrees of membrane penetration, which greatly affected the kinetics of their membrane dissociation. Mutational studies showed that the presence of two proximal hydrophobic residues on the membrane-binding surface of the PH domain is important for membrane penetration and sustained membrane residence. When NIH 3T3 cells were stimulated with platelet-derived growth factor to generate PtdIns(3,4,5)P3, reversible translocation of Btk-PH, Grp1-PH, ARNO-PH, DAPP1-PH, and its L177A mutant to the plasma membrane was consistent with their in vitro membrane binding properties. Collectively, these studies provide new insight into how various PH domains would differentially respond to cellular PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals.  相似文献   

13.
Kindlins are a subclass of FERM-containing proteins that have recently emerged as key regulators of integrin receptor activation and signaling. As compared with the conventional FERM domain, the kindlin FERM domain contains an inserted pleckstrin homology (PH) domain that recognizes membrane phosphoinositides, including phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). Using NMR spectroscopy, we show that PIP3 site-specifically binds to kindlin-2 PH with substantial chemical shift changes that are much larger than PIP2. This suggests an enhanced association of kindlin-2 with membrane as mediated by PIP3 upon its conversion from PIP2 by phosphoinositide-3 kinase, a known regulator of integrin activation. We determined the NMR structure of the kindlin-2 PH domain bound to the head group of PIP3, inositol 1,3,4,5-tetraphosphate (IP4). The structure reveals a canonical PH domain fold, yet with a distinct IP4 binding pocket that appears highly conserved for the kindlin family members. Functional experiments demonstrate that although wild type kindlin-2 is capable of cooperating with integrin activator talin to induce synergistic integrin α(IIb)β(3) activation, this ability is significantly impaired for a phosphoinositide binding-defective kindlin-2 mutant. These results define a specific PIP3 recognition mode for the kindlin PH domain. Moreover, they shed light upon a mechanism as to how the PH domain mediates membrane engagement of kindlin-2 to promote its binding to integrin and cooperation with talin for regulation of integrin activation.  相似文献   

14.
BRCT tandem domains, found in many proteins involved in DNA damage checkpoint and DNA repair pathways, were recently shown to be phosphopeptide binding motifs. Using solution nuclear magnetic resonance (NMR) spectroscopy and mutational analysis, we have characterized the interaction of BRCA1-BRCT domains with a phosphoserine-containing peptide derived from the DNA repair helicase BACH1. We show that a phenylalanine in the +3 position from the phosphoserine of BACH1 is bound to a conserved hydrophobic pocket formed between the two BRCT domains and that recognition of the phosphate group is mediated by lysine and serine side chains from the amino-terminal BRCT domain. Mutations that prevent phosphopeptide binding abolish BRCA1 function in DNA damage-induced checkpoint control. Our NMR data also reveal a dynamic interaction between BRCA1-BRCT and BACH1, where the bound phosphopeptide exists as an equilibrium of two conformations and where BRCA1-BRCT undergoes a transition to a more rigid conformation upon peptide binding.  相似文献   

15.
Four-phosphate-adaptor protein 1 (FAPP1) regulates secretory transport from the trans-Golgi network (TGN) to the plasma membrane. FAPP1 is recruited to the Golgi through binding of its pleckstrin homology (PH) domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). Despite the critical role of FAPP1 in membrane trafficking, the molecular basis of its dual function remains unclear. Here, we report a 1.9 Å resolution crystal structure of the FAPP1 PH domain and detail the molecular mechanisms of the PtdIns(4)P and ARF1 recognition. The FAPP1 PH domain folds into a seven-stranded β-barrel capped by an α-helix at one edge, whereas the opposite edge is flanked by three loops and the β4 and β7 strands that form a lipid-binding pocket within the β-barrel. The ARF1-binding site is located on the outer side of the β-barrel as determined by NMR resonance perturbation analysis, mutagenesis, and measurements of binding affinities. The two binding sites have little overlap, allowing FAPP1 PH to associate with both ligands simultaneously and independently. Binding to PtdIns(4)P is enhanced in an acidic environment and is required for membrane penetration and tubulation activity of FAPP1, whereas the GTP-bound conformation of the GTPase is necessary for the interaction with ARF1. Together, these findings provide structural and biochemical insight into the multivalent membrane anchoring by the PH domain that may augment affinity and selectivity of FAPP1 toward the TGN membranes enriched in both PtdIns(4)P and GTP-bound ARF1.  相似文献   

16.
Phospholipases C (PLCs) reversibly associate with membranes to hydrolyze phosphatidylinositol-4, 5-bisphosphate (PI[4,5]P(2)) and comprise four main classes: beta, gamma, delta, and epsilon. Most eukaryotic PLCs contain a single, N-terminal pleckstrin homology (PH) domain, which is thought to play an important role in membrane targeting. The structure of a single PLC PH domain, that from PLCdelta1, has been determined; this PH domain binds PI(4,5)P(2) with high affinity and stereospecificity and has served as a paradigm for PH domain functionality. However, experimental studies demonstrate that PH domains from different PLC classes exhibit diverse modes of membrane interaction, reflecting the dissimilarity in their amino acid sequences. To elucidate the structural basis for their differential membrane-binding specificities, we modeled the three-dimensional structures of all mammalian PLC PH domains by using bioinformatic tools and calculated their biophysical properties by using continuum electrostatic approaches. Our computational analysis accounts for a large body of experimental data, provides predictions for those PH domains with unknown functions, and indicates functional roles for regions other than the canonical lipid-binding site identified in the PLCdelta1-PH structure. In particular, our calculations predict that (1). members from each of the four PLC classes exhibit strikingly different electrostatic profiles than those ordinarily observed for PH domains in general, (2). nonspecific electrostatic interactions contribute to the membrane localization of PLCdelta-, PLCgamma-, and PLCbeta-PH domains, and (3). phosphorylation regulates the interaction of PLCbeta-PH with its effectors through electrostatic repulsion. Our molecular models for PH domains from all of the PLC classes clearly demonstrate how a common structural fold can serve as a scaffold for a wide range of surface features and biophysical properties that support distinctive functional roles.  相似文献   

17.
The accurate cleavage of pre‐micro(mi)RNAs by Dicer and mi/siRNA guide strand selection are important steps in forming the RNA‐induced silencing complex (RISC). The role of Dicer binding partner TRBP in these processes remains poorly understood. Here, we solved the solution structure of the two N‐terminal dsRNA binding domains (dsRBDs) of TRBP in complex with a functionally asymmetric siRNA using NMR, EPR, and single‐molecule spectroscopy. We find that siRNA recognition by the dsRBDs is not sequence‐specific but rather depends on the RNA shape. The two dsRBDs can swap their binding sites, giving rise to two equally populated, pseudo‐symmetrical complexes, showing that TRBP is not a primary sensor of siRNA asymmetry. Using our structure to model a Dicer‐TRBP‐siRNA ternary complex, we show that TRBP's dsRBDs and Dicer's RNase III domains bind a canonical 19 base pair siRNA on opposite sides, supporting a mechanism whereby TRBP influences Dicer‐mediated cleavage accuracy by binding the dsRNA region of the pre‐miRNA during Dicer cleavage.  相似文献   

18.
The Slit-Robo (sr) GTPase-activating protein (GAPs) are important components in the intracellular pathway mediating Slit-Robo signaling in axon guidance and cell migration. We report the first crystal structure of the srGAP1 SH3 domain at 1.8-A resolution. The unusual side chain conformation of the conserved Phe-13 in the P1 pocket renders the ligand binding pocket shallow and narrow, which contributes toward the low binding affinity. Moreover, the opposing electrostatic charge and the hydrophobic properties of the P3 specificity pocket are consistent with the observed binding characteristics of the srGAP1 SH3 domain to its ligand. Surface plasmon resonance experiments indicate that the srGAP1 SH3 domain interacts with its natural ligand inaCtoN orientation. The srGAP1 SH3 domain can bind to both the CC2 and CC3 motifs in vitro. The N-terminal two acidic residues in the CC3 motif recognition site are necessary for srGAP1 SH3 domain binding. A longer CC3 peptide (CC3-FL) binds with greater affinity than its shorter counterpart, suggesting that the residues surrounding the proline-rich core are important for protein-peptide interactions. Our study reveals previously unknown properties of the srGAP-Robo interaction. Our data provide a structural basis for the srGAP-Robo interaction, consistent with the role of the Robo intracellular domain in interacting with other downstream signaling molecules and mediating versatile and dynamic responses to axon guidance and cell migration cues.  相似文献   

19.
RBM45 is an RNA-binding protein involved in neural development, whose aggregation is associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). However, the mechanisms of RNA-binding and aggregation of RBM45 remain unelucidated. Here, we report the crystal structure of the N-terminal tandem RRM domains of human RBM45 in complex with single-stranded DNA (ssDNA). Our structural and biochemical results revealed that both the RRM1 and RRM2 of RBM45 recognized the GAC sequence of RNA/ssDNA. Two aromatic residues and an arginine residue in each RRM were critical for RNA-binding, and the interdomain linker was also involved in RNA-binding. Two RRMs formed a pair of antiparallel RNA-binding sites, indicating that the N-terminal tandem RRM domains of RBM45 bound separate GAC motifs in one RNA strand or GAC motifs in different RNA strands. Our findings will be helpful in the identification of physiologic targets of RBM45 and provide evidence for understanding the physiologic and pathologic functions of RBM45.  相似文献   

20.
Pleckstrin homology (PH) domains are phosphoinositide (PI)-binding modules that target proteins to membrane surfaces. Here we define a family of PH domain proteins, including Tiam1 and ArhGAP9, that demonstrates specificity for PI(4,5)P(2), as well as for PI(3,4,5)P(3) and PI(3,4)P(2), the products of PI 3-kinase. These PH domain family members utilize a non-canonical phosphoinositide binding pocket related to that employed by beta-spectrin. Crystal structures of the PH domain of ArhGAP9 in complex with the headgroups of Ins(1,3,4)P(3), Ins(1,4,5)P(3), and Ins(1,3,5)P(3) reveal how two adjacent phosphate positions in PI(3,4)P(2), PI(4,5)P(2), and PI(3,4,5)P(3) are accommodated through flipped conformations of the bound phospholipid. We validate the non-canonical site of phosphoinositide interaction by showing that binding pocket mutations, which disrupt phosphoinositide binding in vitro, also disrupt membrane localization of Tiam1 in cells. We posit that the diversity in PI interaction modes displayed by PH domains contributes to their versatility of use in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号