首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of desmin was characterized in cultured rat and bovine satellite cells and its potential usefulness as a marker for identifying satellite cells in vitro was evaluated. In primary cultures, positive immunohistochemical staining for desmin and skeletal muscle myosin was observed in rat and bovine myotubes. A small number of mononucleated cells (20% of rat satellite cells and 5% of bovine satellite cells) were myosin-positive, indicative of post-mitotic differentiated myocytes. In bovine satellite cell cultures 13% of the mononucleated cells were desmin-positive, while 84% of the mononucleated cells in rat satellite cell cultures were desmin-positive. Rat satellite cell mass cultures and bovine satellite cell clonal density cultures were pulsed with 3H-thymidine, and autoradiographic data revealed that greater than 94% of dividing rat cells were desmin-positive, suggesting that desmin is synthesized in proliferating rat satellite cells. However, no desmin was seen in cells that incorporated labeled thymidine in bovine satellite cell clones. Analysis of clonal density cultures revealed that only 14% of the mononucleated cells in bovine satellite cell colonies were desmin-positive, whereas 98% of the cells in rat satellite cell colonies were desmin-positive. Fibroblast colonies from both species were desmin-negative. In order to further examine the relationship between satellite cell differentiation and desmin expression, 5-bromo-2'-deoxyuridine (BrdU) was added to culture medium at the time of plating to inhibit differentiation. Fusion was inhibited in rat and bovine cultures, and cells continued to divide. Very few desmin-positive cells were found in bovine cultures, but greater than 90% of the cells in rat cultures stained positive for desmin. The presence of desmin and sarcomeric myosin was also evaluated in regenerating rat tibialis anterior five days after bupivacaine injection. In regenerating areas of the muscle many desmin-positive cells were present, and only a few cells stained positive for skeletal muscle myosin. Application of desmin staining to rat satellite cell growth assays indicated that rat satellite cells cultured in serum-containing medium were contaminated with fibroblasts at levels that ranged from approximately 5% in 24 hr cultures to 15% in mature cultures. In defined medium 4 day cultures contain approximately 95% to 98% desmin-positive satellite cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Pure populations of myogenic cells were obtained by cloning satellite cells from human skeletal muscle biopsies. Cell-surface glycoproteins at various stages of myogenesis were analysed by one- and two-dimensional gel electrophoresis. A total of 14 distinct proteins were detectable at the cell surface, on the basis of their susceptibility to desialation by exogenous neuraminidase or their iodination by exogenous lactoperoxidase. Reproducible changes in lectin binding or iodination of eight of these proteins occurred during myogenesis. Only two of the developmentally regulated proteins were components of the detergent-insoluble extracellular matrix fraction. Developmental regulation of these two proteins was unaffected by growth of cultures in 5-bromo-2'-deoxyuridine to inhibit myogenesis. In contrast, developmental regulation of the other cell-surface proteins was inhibited by growth in 5-bromo-2'-deoxyuridine, suggesting that changes in these proteins are tightly coupled to satellite cell differentiation. These studies represent the first systematic analysis of the surface proteins of pure, clonally derived, primary cultures of normal myogenic cells.  相似文献   

3.
4.
The biosynthesis and accumulation of the myosin heavy chain (MHC) peptide has been examined in embryonic chick skeletal muscle cultures under conditions of normal or arrested cell fusion. When compared with primary chick fibroblasts, the myogenic cells accumulated significantly more MHC, even while mononucleated. Electron microscopy of the fusion-blocked cultures revealed the presence of myosinlike thick filaments in the myoblasts. It is concluded that cell fusion is not a prerequisite for myosin accumulation or myofilament assembly during embryonic chick muscle differentiation.  相似文献   

5.
Female Wistar-Furth rats were injected at one week of age with cells from either the GH1 or GH3 rat pituitary cell lines. Controls were injected with vehicle. Rats were killed at 11 weeks of age and satellite cells in the soleus and extensor digitorum longus (EDL) muscles were examined using transmission electron microscopy. Satellite cells in both the soleus and EDL muscles of rats with tumours which secreted growth hormone generally appeared to be metabolically more active than those cells seen in the muscles of control rats. The source of pituitary cell line did not appear to influence satellite cell ultrastructure. In rare instances, myofibers of tumor-bearing rats appeared to extend cytoplasmic projections around satellite cells as if to engulf the latter. There was no evidence of a pathological condition. Since only one time frame was observed, the effects of prolonged exposure to elevated blood growth hormone levels on satellite cells are not known.  相似文献   

6.
肌卫星细胞研究进展   总被引:8,自引:0,他引:8  
Chen XP  Fan M 《生理科学进展》2003,34(2):136-139
骨骼肌中的卫星细胞,长期以来就被认为是出生后骨骼肌生长、修复和维持的单能成肌干细胞。近年研究发现,卫星细胞与内皮细胞共同起源于胚胎血管祖细胞,且成年骨骼肌中存在多能干细胞,这些肌源多能干细胞在适当的微环境中具有多向分化潜能。这将为治疗包括帕金森病在内的多种临床退行性疾病提供自体干细胞的新来源。本文对肌卫星细胞的起源、增殖和成肌分化的分子调节机制,以及肌卫星细胞的多能干细胞潜能等方面的研究进展进行了综述。  相似文献   

7.
Cultured quiescent satellite cells were subjected to mechanical stretch in a FlexerCell System. In response to stretch, satellite cells entered the cell cycle earlier than if they were under control conditions. Only a brief period of stretch, as short as 2 h, was necessary to stimulate activation. Additionally, conditioned medium from stretched cells could activate unstretched satellite cells. The presence of HGF on c-met-positive myogenic cells was detected by immunofluorescence at 12 h in culture, and immunoblots demonstrated that HGF was released by stretched satellite cells into medium. Also, stretch activation could be abolished by the addition of anti-HGF antibodies to stretched cultures, and activity in conditioned medium from stretched cells could be neutralized by anti-HGF antibodies. In addition, stretch appeared to cause release of preexisting HGF from the extracellular matrix. These experiments suggest that HGF may be involved in linking mechanical perturbation of muscle to satellite cell activation.  相似文献   

8.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

9.
Skeletal muscle satellite cells cultured in simulated microgravity   总被引:4,自引:3,他引:1  
Summary Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and, therefore, provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (∼ 200 gm) were used for all studies and were composed of greater than 75% satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D culture and 3-D HARV culture. Plating efficiency (cells attached ÷ cells plated ×100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and nonsatellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability because glucose levels in medium from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARV were joined together by cells into 3-D aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of satellite cells on microcarrier beads within the HARV bioreactor results in a 3-D level of organization that could provide a more suitable model to study postnatal muscle development than is currently available with standard culture methods.  相似文献   

10.
MyoD-deficient mice are without obvious deleterious muscle phenotype during embryogenesis and fetal development, and adults in the laboratory have grossly normal skeletal muscle and life span. However, a previous study showed that in the context of muscle degeneration on a mdx (dystrophin null) genetic background, animals lacking MyoD have a greatly intensified disease phenotype leading to lethality not otherwise seen in mdx mice. Here we have examined MyoD(-/-) adult muscle fibers and their associated satellite cells in single myofiber cultures and describe major phenotypic differences found at the tissue, cellular, and molecular levels. The steady-state number of satellite cells on freshly isolated MyoD(-/-) fibers was elevated and abnormal branched fiber morphologies were observed, the latter suggesting chronic muscle regeneration in vivo. Single-cell RNA coexpression analyses were performed for c-met, m-cadherin, and the four myogenic regulatory factors (MRFs.) Most mutant satellite cells entered the cell cycle and upregulated expression of myf5, both characteristic early steps in satellite cell maturation. However, they later failed to normally upregulate MRF4, displayed a major deficit in m-cadherin expression, and showed a significant diminution in myogenin-positive status compared with wildtype. MyoD(-/-) satellite cells formed unusual aggregate structures, failed to fuse efficiently, and showed greater than 90% reduction in differentiation efficiency relative to wildtype. A further survey of RNAs encoding regulators of growth and differentiation, cell cycle progression, and cell signaling revealed similar or identical expression profiles for most genes as well as several noteworthy differences. Among these, GDF8 and Msx1 were identified as potentially important regulators of the quiescent state whose expression profile differs between mutant and wildtype. Considered together, these data suggest that activated MyoD(-/-) satellite cells assume a phenotype that resembles in some ways a developmentally "stalled" cell compared to wildtype. However, the MyoD(-/-) cells are not merely developmentally immature, as they also display novel molecular and cellular characteristics that differ from any observed in wild-type muscle precursor counterparts of any stage.  相似文献   

11.
12.
Skeletal muscle satellite cells and adult myogenesis   总被引:9,自引:0,他引:9  
  相似文献   

13.
Cell cycle commitment of rat muscle satellite cells   总被引:6,自引:0,他引:6       下载免费PDF全文
Satellite cells of adult muscle are quiescent myogenic stem cells that can be induced to enter the cell cycle by an extract of crushed muscle (Bischoff, R. 1986. Dev. Biol. 115:140-147). Here, evidence is presented that the extract acts transiently to commit cells to enter the cell cycle. Satellite cells associated with both live and killed rat myofibers in culture were briefly exposed to muscle extract and the increase in cell number was determined at 48 h in vitro, before the onset of fusion. An 8-12-h exposure to extract with killed, but not live, myofibers was sufficient to produce maximum proliferation of satellite cells. Continuous exposure for over 40 h was needed to sustain proliferation of satellite cells on live myofibers. The role of serum factors was also studied. Neither serum nor muscle extract alone was able to induce proliferation of satellite cells. In the presence of muscle extract, however, satellite cell proliferation was directly proportional to the concentration of serum in the medium. These results suggest that mitogens released from crushed muscle produce long-lasting effects that commit quiescent satellite cells to divide, whereas serum factors are needed to maintain progression through the cell cycle. Contact with a viable myofiber modulates the response of satellite cells to growth factors.  相似文献   

14.
Population counts and size measurements of satellite cell nuclei and myonuclei were carried out on the normal gastrocnemius muscles of adult Rana pipiens and Rana clamitans. Satellite cell profiles occurred with an observed frequency of about 1.3% in the muscles of the R. pipiens, and with an observed frequency of about 1.6% in the muscles of the R. clamitans. These frequencies were not found to be significantly different. The observed frequencies were corrected for the sampling bias introduced by the difference in the mean size of the satellite cell nuclei and myonuclei. This correction suggests that R. pipiens and R. clamitans both have a true satellite cell frequency of approx 2.7%. Analysis of these data indicates that the satellite cells of the normal anuran gastrocnemius occur in sufficient numbers to account for the regeneration seen after injury to this muscle.  相似文献   

15.
Myogenesis in the embryo and the adult mammal consists of a highly organized and regulated sequence of cellular processes to form or repair muscle tissue that include cell proliferation, migration, and differentiation. Data from cell culture and in vivo experiments implicate both FGFs and HGF as critical regulators of these processes. Both factors require heparan sulfate glycosaminoglycans for signaling from their respective receptors. Since syndecans, a family of cell-surface transmembrane heparan sulfate proteoglycans (HSPGs) are implicated in FGF signaling and skeletal muscle differentiation, we examined the expression of syndecans 1-4 in embryonic, fetal, postnatal, and adult muscle tissue, as well as on primary adult muscle fiber cultures. We show that syndecan-1, -3, and -4 are expressed in developing skeletal muscle tissue and that syndecan-3 and -4 expression is highly restricted in adult skeletal muscle to cells retaining myogenic capacity. These two HSPGs appear to be expressed exclusively and universally on quiescent adult satellite cells in adult skeletal muscle tissue, suggesting a role for HSPGs in satellite cell maintenance or activation. Once activated, all satellite cells maintain expression of syndecan-3 and syndecan-4 for at least 96 h, also implicating these HSPGs in muscle regeneration. Inhibition of HSPG sulfation by treatment of intact myofibers with chlorate results in delayed proliferation and altered MyoD expression, demonstrating that heparan sulfate is required for proper progression of the early satellite cell myogenic program. These data suggest that, in addition to providing potentially useful new markers for satellite cells, syndecan-3 and syndecan-4 may play important regulatory roles in satellite cell maintenance, activation, proliferation, and differentiation during skeletal muscle regeneration.  相似文献   

16.
Sythesis of tropomyosin in cultures of differentiating muscle cells   总被引:4,自引:1,他引:3       下载免费PDF全文
The accumulation of tropomyosin in cultures of differentiating muscle cells was quantitatively measured. Tropomyosin was isolated from cultured cells during and after myoblast fusion; both alpha- and beta- subunits were present in myotube cultures. During fusion small amounts of tropomyosin were detectable, but, as fusion approached a maximum, tropomyosin accumulation began to increase. The increased synthesis of tropomyosin after the initiation of muscle cell fusion is consistent with the increased synthesis of other proteins characteristic of muscle, including myosin.  相似文献   

17.
The failure of denervated muscle to undergo effective regeneration, despite reported increases in the number of muscle satellite cells, warranted an investigation of the viability and myoblastic capacity of these cells present in denervated muscle. Four types of satellite cells present in muscle denervated for three weeks are described, based on their ultrastructure and relationship to their principal fiber. The increased number of ribosomes, including helically arranged polysomes; the number of Golgi complexes; the presence of microtubules; the branching subsarcolemmal tubular system; and the appearance of regularly arranged 96 A microfilaments with diffuse electron dense areas are structural features of satellite cells that are similar to those of developing myoblasts in growing and regenerating muscle. The electron microscopic observations suggest that "activated" satellite cells do have myoblastic potential. Possible explanations for the ultimate failure of denervated muscle to regenerate include: 1) the inability of the muscle to produce satellite cells rapidly enough to keep pace with muscle degeneration; 2) a cytotoxic effect produced by the degenerating muscle fiber on the satellite cell; and 3) the inability of satellite cells to form stable, mature multinucleated fibers in the absence of the trophic effect of the nerve.  相似文献   

18.
Proliferation of muscle satellite cells on intact myofibers in culture   总被引:18,自引:0,他引:18  
Muscle satellite cells are quiescent myogenic stem cells situated between the basal lamina and plasmalemma of mature skeletal muscle fibers. Injury to the fiber triggers the activation and proliferation of satellite cells whose progeny subsequently fuse to form new myotubes during regeneration. In this paper we report the proliferation of satellite cells on single muscle fibers isolated from adult rats and placed in culture. Viable fibers were liberated from muscle with collagenase and purified from non-muscle cells. The fibers were covered with a basal lamina and retained normal morphological characteristics. Each fiber contained two to three satellite cells per 100 myonuclei. Satellite cells showed little proliferative activity in medium with 10% serum but could be induced to enter the cell cycle by chick embryo extract or fibroblast growth factor. Other polypeptide mitogens such as epidermal growth factor, multiplication stimulating activity, and platelet-derived growth factor were ineffective. Mitogen-stimulated satellite cells fused to form new myotubes after 4-5 days in culture. These results imply that satellite cells are under positive growth control since they proliferate in contact with viable mature fibers when stimulated with mitogen. The mature fibers remained viable in culture but did not give rise to mononucleated cells. After several days, however, the fibers began to extend sarcoplasmic sprouts and underwent dedifferentiative changes that led to the formation of multinucleated cells resembling myotubes. These cells reexpressed embryonic isozymes of creatine kinase not made by the mature fibers.  相似文献   

19.
20.
Asymmetric self-renewal and commitment of satellite stem cells in muscle   总被引:20,自引:0,他引:20  
Kuang S  Kuroda K  Le Grand F  Rudnicki MA 《Cell》2007,129(5):999-1010
Satellite cells play a central role in mediating the growth and regeneration of skeletal muscle. However, whether satellite cells are stem cells, committed progenitors, or dedifferentiated myoblasts has remained unclear. Using Myf5-Cre and ROSA26-YFP Cre-reporter alleles, we observed that in vivo 10% of sublaminar Pax7-expressing satellite cells have never expressed Myf5. Moreover, we found that Pax7(+)/Myf5(-) satellite cells gave rise to Pax7(+)/Myf5(+) satellite cells through apical-basal oriented divisions that asymmetrically generated a basal Pax7(+)/Myf5(-) and an apical Pax7(+)/Myf5(+) cells. Prospective isolation and transplantation into muscle revealed that whereas Pax7(+)/Myf5(+) cells exhibited precocious differentiation, Pax7(+)/Myf5(-) cells extensively contributed to the satellite cell reservoir throughout the injected muscle. Therefore, we conclude that satellite cells are a heterogeneous population composed of stem cells and committed progenitors. These results provide critical insights into satellite cell biology and open new avenues for therapeutic treatment of neuromuscular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号