首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
IL-1β和胎牛血清对大鼠神经干细胞分化的影响   总被引:10,自引:1,他引:9  
在成年大鼠纹状体区分离神经干细胞,使用白介素-1β、神经生长因子、全反维甲酸和不同含量的胎牛血清作为诱导因子,通过免疫荧光化学方法和流式细胞仪检测细胞分化。结果表明胎牛血清有助于神经干细胞向星形胶质细胞和少突胶质细胞分化,IL-1β虽然对神经元数目没有明显影响,但对神经干细胞向多巴胺能神经元的分化却有明显促进作用。神经生长因子和全反维甲酸对神经干细胞向神经元、星形胶质细胞、少突胶质细胞和多巴胺能神经元的分化数量无明显影响。  相似文献   

2.
神经干细胞及其对脑缺血损伤的潜在治疗作用   总被引:6,自引:0,他引:6  
新神经元在成年哺乳动物脑的特定区域出现,起源于海马齿状回和室下带的神经干细胞,神经干细胞可以分化成神经元,星形胶质细胞和少突胶质细胞,采用双标技术可以检测新神经元的发生,神经干细胞具有自我更新和多方向分化的潜能,受内在因素和外部环境的调控,证据显示成年人脑海马齿9状回的颗粒细胞产生新神经元,恒河猴的室下带产生新神经元,迁移到新皮质区分化为成熟神经元,人的神经干细胞已从胚胎前脑获得,缺血损伤可以激活齿状回的神经干细胞增殖,激活或移植神经干细胞对缺血损伤的脑组织具有潜在的治疗作用。  相似文献   

3.
在中枢神经系统 ,成年后新神经元发生主要见于两个脑区 ,即室管下区 (subventricularzone)与海马的颗粒下区 (subgranularzone)。正常情况下 ,除上述脑区外的其它脑区能够产生神经胶质细胞 ,但是不能产生神经元。为了研究神经元和 /或神经胶质细胞对来源于成年的神经干细胞分化的影响 ,Song等分离了成年大鼠海马的神经元和星形胶质细胞 ,将其分别或联合与来自成年的、依赖FGF 2的神经干细胞共培养 ,意外地发现神经元促进神经干细胞分化为少突胶质细胞 ,而星形胶质细胞则促进神经干细胞分化为神经…  相似文献   

4.
探讨大鼠巨细胞病毒(rat cytomegalovirus,RCMV)感染大鼠星形胶质细胞后,对神经干细胞分化的影响。原代分离培养新生大鼠星形胶质细胞和胚胎海马神经干细胞,将星形胶质细胞感染RCMV后和神经干细胞在Transwell24孔共培养体系下进行共培养,同时设对照组;用免疫荧光染色等方法检测神经干细胞与感染RCMV的星形胶质细胞共培养后,其分化细胞中神经元微管相关蛋白(microtubule-associated protein 2,MAP2)和星形胶质细胞胶质纤维酸性蛋白(glial fibril—lary acidic protein,GFAP)的表达。结果发现,感染RCMV的星形胶质细胞与神经干细胞共培养时,神经干细胞分化减慢,分化成的神经元和星形胶质细胞比率低于对照组,提示星形胶质细胞感染RCMV后可抑制神经干细胞的分化,可能与RCMV影响星形胶质细胞合成和分泌各种营养因子,干扰了神经干细胞的分化进程有关。  相似文献   

5.
Lu WG  Chen H  Wang D  Li FG  Zhang SM 《生理学报》2007,59(1):51-57
全能区域非特异性的胚胎干细胞是研究成体不同脑区控制干细胞分化能力的十分有力的工具。胚胎干细胞源性神经前体细胞移植入成体脑后可分化为功能性神经元,但是未分化的胚胎干细胞在成体脑内各个部位的存活、生长与分化的潜能差异尚不清楚。本文旨在探讨成体脑组织对胚胎干细胞的影响及胚胎干细胞在成体脑内的一系列行为。将少量转绿色荧光蛋白未分化的小鼠胚胎干细胞移植入成体大鼠脑内不同部位,分别于移植5、14和28d后处死大鼠,进行形态学观察及免疫组化定性,以了解未分化的小鼠胚胎干细胞在大鼠脑内不同区域的存活、生长与分化。结果发现未分化的小鼠胚胎干细胞可逐步整合入受体组织并向nestin阳性神经前体细胞分化。移植细胞及其后裔在海马生长最为旺盛,而在隔区最差(P〈0.01);移植细胞分化为神经干细胞的效率也是在海马最高,而在隔区最低(P〈0.01)。提示只有部分脑区适合胚胎干细胞及其后裔生存,并提供促进其分化的有益环境。因此,由于位置特异的微环境因子及环境因素的存在,宿主组织特性对决定中枢神经系统疾病的细胞替代疗法策略是相当重要的。  相似文献   

6.
维甲酸和EGF对大鼠脑胚胎神经干细胞增殖和分化的影响   总被引:3,自引:0,他引:3  
目的 观察全反式维甲酸(RA)和表皮生长因子(EGF)对大鼠胚胎神经干细胞增殖和分化的影响。方法 从大鼠胚胎脑中分离神经干细胞,经RA和EGF处理后,用台盼蓝确定细胞数量,BrdU标记分析细胞生长能力,采用免疫细胞化学法鉴定神经干细胞和分化的神经细胞。结果 20ng/ml EGF和1μmol/LRA处理的培养细胞均显示增殖效应,但EGF处理组增殖速度明显高于RA组,悬浮细胞中有大量nestin和BrdU阳性细胞。用EGF和EGE/RA诱导的神经元分化率分别为17%和31%,而RA处理的神经元分化率显升高至89%。由EGF、EGF/RA和RA诱导的星形胶质细胞分化率分别为83%、69%和11%。结论 EGF主要促进神经干细胞增殖并主要诱导星形胶质细胞的生成,RA主要诱导神经干细胞向神经元分化,二无明显协同效应。  相似文献   

7.
本文旨在研究人源胚胎神经干细胞(human embryonic neural stem cells,h NSCs)移植到脑缺血/再灌注损伤大鼠脑内后的迁移、分化,以及对大鼠脑卒中的疗效。我们在大脑中动脉栓塞(middle cerebral artery occlusion,MCAO)1 h的大鼠模型上,于血流再灌注后第7天注射h NSCs到缺血侧侧脑室,通过焦油紫染色测量大鼠的脑梗死体积,通过检测大鼠的感觉运动行为评估其神经功能的恢复水平,通过免疫荧光共标观察移植后的h NSCs在脑内的迁移与分化。结果显示,h NSCs移植后能够显著减小脑卒中大鼠脑梗死体积,并改善脑卒中大鼠的转棒、错步和转角等运动行为能力;侧脑室注射的h NSCs优先向胼胝体以及梗死区周边迁移,迁移到胼胝体的h NSCs可以分化成少突胶质细胞和星形胶质细胞,迁移到梗死区周边的细胞能够分化成神经元。以上这些结果提示,侧脑室移植的h NSCs可能通过向特定脑区的迁移和分化发挥对脑缺血/再灌注损伤大鼠的保护作用。  相似文献   

8.
神经干细胞是一类具有分裂潜能和自更新能力的母细胞,它可以通过对称分裂和不对称分裂方式产生神经组织的各类细胞,包括神经元、星形胶质细胞和少突胶质细胞。中枢神经系统受到损伤后,神经元和胶质细胞的损伤导致了临床症状,内源性神经干细胞的修复作用不大,原因是干细胞的数量有限,微环境的不允许。移植的神经干细胞进入体内后,由于受到多种因素的影响,常保持未分化状态或大部分分化为胶质细胞。神经干细胞向神经元分化的调控机制及其影响因素直接决定神经干细胞源性神经元的比例和神经元之间功能性突触的数量。现就其研究进展做一综述。  相似文献   

9.
目的探讨体外诱导人脐血间充质干细胞(MSCs)向神经细胞分化的条件,为治疗中枢神经系统损伤提供实用的干细胞来源。方法体外分离、纯化、扩增脐血MSCs,流式细胞仪检测细胞表面标志。采用脑源性神经营养因子BDNF 10ng/ml 维甲酸RA0.5μM 碱性成纤维生长因子bFGF 20ng/ml协同诱导脐血MSCs定向分化。免疫荧光染色检测诱导后细胞的星形胶质细胞特异标志GFAP及神经元特异标志MAP2的表达情况。建立大鼠脊髓横断损伤模型,将BrdU标记的诱导后的细胞移植入损伤的脊髓中,采用BBB运动功能评分标准在术后24h及1、2、3、4、5周各时间点对大鼠进行运动功能评分。用组织学和免疫组化方法检测移植到大鼠脊髓中的BrdU阳性细胞的存活、迁移、分化情况。结果脐血MSCs体外培养三代后,细胞表面CD11b、CD34、CD45和CD44表达阴性。诱导分化7d后,大部分细胞的形态类似神经元,免疫荧光染色检测MAP2阳性细胞占大多数,明显多于GFAP阳性细胞。5周后,细胞移植组大鼠的后肢运动功能恢复情况较对照组好。免疫组织化学结果显示植入的细胞可长时间在宿主脊髓中存活,并向损伤处两端迁移。结论人脐血MSCs于体外在特定的条件下可以诱导分化为神经元样细胞。移植脐血MSCs诱导后的神经细胞可在损伤的脊髓中存活、迁移,并能促进脊髓损伤后行为和功能恢复。  相似文献   

10.
目的:探讨高压氧对急性CO中毒大鼠脑内源性神经干细胞的影响,分析HBO治疗急性CO中毒脑损伤的机制。方法:建立急性CO中毒大鼠模型,给予高压氧(HBO)治疗后,H-E染色观察大鼠脑组织病理学变化,免疫组织化学方法检测大鼠脑内神经干细胞(nestin)和星形胶质细胞(GFAP)的表达。结果:H-E染色标本上,对照组脑内神经元形态正常,染毒组脑皮质出现大量变性坏死细胞,海马锥体细胞层稀疏,HBO组坏死细胞明显减少。免疫组化结果显示对照组nestin和GFAP表达数量形态均正常,染毒组nestin表达增加,但无统计学意义,GFAP形态数量发生改变,HBO组nestin表达明显增加,且在大脑皮层可见部分nestin阳性细胞和nestin-GFAP双阳性细胞;GFAP表达趋于正常。结论:急性CO中毒作为脑损伤因素可轻度激活大鼠脑内源性神经干细胞,并使星形胶质细胞增生变形、神经元变性坏死,HBO治疗可减轻星形胶质细胞损伤,明显激活内源性神经干细胞,并促使其增殖、迁移和分化。提示HBO可能通过激活神经干细胞起治疗作用。  相似文献   

11.
Neural stem cells (NSCs) can self-renew and differentiate into neurons and glia. Transplanted NSCs can replace lost neurons and glia after spinal cord injury (SCI), and can form functional relays to re-connect spinal cord segments above and below a lesion. Previous studies grafting neural stem cells have been limited by incomplete graft survival within the spinal cord lesion cavity. Further, tracking of graft cell survival, differentiation, and process extension had not been optimized. Finally, in previous studies, cultured rat NSCs were typically reported to differentiate into glia when grafted to the injured spinal cord, rather than neurons, unless fate was driven to a specific cell type. To address these issues, we developed new methods to improve the survival, integration and differentiation of NSCs to sites of even severe SCI. NSCs were freshly isolated from embryonic day 14 spinal cord (E14) from a stable transgenic Fischer 344 rat line expressing green fluorescent protein (GFP) and were embedded into a fibrin matrix containing growth factors; this formulation aimed to retain grafted cells in the lesion cavity and support cell survival. NSCs in the fibrin/growth factor cocktail were implanted two weeks after thoracic level-3 (T3) complete spinal cord transections, thereby avoiding peak periods of inflammation. Resulting grafts completely filled the lesion cavity and differentiated into both neurons, which extended axons into the host spinal cord over remarkably long distances, and glia. Grafts of cultured human NSCs expressing GFP resulted in similar findings. Thus, methods are defined for improving neural stem cell grafting, survival and analysis of in vivo findings.  相似文献   

12.
Sun Y  Shi J  Fu SL  Lu PH  Xu XM 《生理学报》2003,55(3):349-354
将胚胎神经干细胞(neural stem cells,NSCs)移植至成年大鼠损伤的脊髓,观察移植后NSCs的存活、迁移以及损伤后的功能恢复。实验结果显示:动物NSCs移植4周后,斜板实验平均角度和运动评分结果比对照组均有明显增高(P<0.05),而脊髓损伤(spinal cord injury,SCI)处的空洞面积显著减小(P<0.05);在NSCs中加入胶质细胞源性的神经营养因子(glial cell line-derived neurotrophic factor,GDNF)后,上述改变更加显著。移植后的NSCs不仅能存活,而且向损伤的头端和尾端迁移达3mm之远。这些结果表明,移植的NSCs不仅可以存活、迁移,还可减小SCI空洞面积,促进动物神经功能的恢复;此外,我们的结果还表明GDNF对SCI功能恢复有促进作用。  相似文献   

13.
目的探讨神经干细胞(NSCs)移植对创伤性脑损伤(TBI)模型大鼠感觉运动功能的恢复作用及其对损伤脑组织中突触素(SYP)表达的影响。方法体外培养大鼠胚胎皮质NSCs;采用Feeney法制备TBI模型,于造模后72h,移植组采用PKH26荧光示踪剂标记的NSCs直接移植于脑损伤区,对照组以等量生理盐水代替NSCs;分别于移植后不同时间点,采用Gridwalk和Latency试验检测TBI大鼠的感觉运动功能;荧光显微镜下计数移植细胞的存活数量;采用免疫印迹和RT-PCR技术检测脑损伤区及周围组织中SYP的表达。结果 NSCs移植大鼠前、后肢功能分别在移植后第2w和4w恢复至手术前水平,而直到第8w,对照组大鼠后肢功能和通过平板移动时间与NSCs移植组和基线比较仍有显著性差异(P〈0.05)。移植的NSCs随移植时间延长存活数量减少,移植后第4w和8w的存活数分别为6.3%±1.0%和4.1%±0.9%。在移植后的8w期间,移植组脑损伤区及周围组织中SYP的表达均明显高于对照组(P〈0.05)。结论移植的NSCs在TBI脑内能够存活,并明显改善了TBI大鼠对侧肢体的感觉运动功能;NSCs移植促进了脑损伤区及周围组织中SYP的表达,这可能是NSCs移植促进功能恢复的机理之一。  相似文献   

14.
15.
In this study, cell suspensions of foetal rat ventral mesencephalic dopaminergic tissue were grafted to the intact (non-lesioned) striatum of adult rats. Differential pulse voltammetry at carbon-fibre micro electrodes (12 microm diameter) was employed to first, monitor the development of dopamine overflow over a 20 week period within the grafts and secondly, their influence on contralateral striatal dopamine overflow. At 8 and 20 weeks, animals were pre-treated with pargyline and both striata were monitored for dopamine overflow for 90 min following d-amphetamine administration. Amphetamine led to a significant increase in dopamine overflow in both the grafted striatum and the contralateral striatum. The time course of dopamine overflow in both the grafted striatum and the striatum contralateral to the graft was similar in all groups of animals. Although the actual concentration of dopamine measured in 20 week old grafts was more (approximately 21%) than that measured in 8 week old grafts, there was no significant difference between the two time points. The concentration of dopamine measured in the striatum contralateral to 8 week old grafts was significantly lower (approximately 43%) than that measured in the striatum of a normal control rats. There was no significant difference between the concentration of dopamine measured in the striatum contralateral to 20 week old grafts and normal control rats. In conclusion, dopamine overflow from a ventral mesencephalic graft does not change significantly between 8 and 20 weeks following grafting. However, the grafted tissue causes a decrease of d-amphetamine-induced dopamine overflow in the contralateral side 8 weeks following grafting, which is restored 12 weeks later.  相似文献   

16.
Neural stem cells (NSCs) are tissue-specific stem cells with self-renewal potential that can give rise to neurons and glia in vivo and in vitro. The aim of this study was to transplant NSCs as whole neurospheres into intact brain and assess the fate and phenotype of their progeny generated in vivo. We isolated NSCs from E14 foetal rat forebrains and cultured them in basic fibroblast and epidermal growth factor-supplemented serum-free medium in the form of neurospheres in vitro. Neurospheres were transplanted into the intact brains of 2 Wistar rats and after a period of 3 weeks, grafted brains were examined immunohistochemically. Neurospheres formed solid grafts that were found in the lateral ventricle and in the velum interpositum under the hippocampus. The majority of cells in the transplanted tissue were identified as beta-III-tubulin(+), NeuN(+), PanNF(+) and synaptophysin(+) neurons and were accumulated throughout the graft centre. GFAP(+) astrocytes were scattered throughout the entire graft and astrocyte processes delimited the outer and perivascular surfaces. A great number of NG2(+) oligodendrocyte precursors was detected. Nestin(+) endothelial cells were found to line capillaries growing in the transplant. These data indicate that nestin(+) NSCs prevailing in neurospheres differentiate following transplantation into nestin(-) neuronal and glial cells which confirms the multipotency of NSCs. Three weeks posttransplantation neuronal and astrocyte cells reached terminal differentiation (formation of synaptic vesicles and superficial and perivascular limiting membranes) while elements of oligodendroglial cell lineage remained immature. Grafting stem cells as non-dissociated neurospheres provide cells with favourable conditions which facilitate cell survival, proliferation and differentiation. However, in the intact brain, grafted neurosphere cells were not found to integrate with the brain parenchyma and formed a compact structure demarcated from its surroundings.  相似文献   

17.
18.
Pluripotent embryonic stem (ES) cells are the most versatile cells, with the potential to differentiate into all types of cell lineages including neural precursor cells (NPCs), which can be expanded in large numbers for significant periods of time to provide a reliable cell source for transplantation in neurodegenerative disorders such as Parkinson's disease (PD). In the present study, we used the MESPU35 mouse ES cell line, which expresses enhanced green fluorescent protein that enables one to distinguish between transplanted cells and cells of host origin. Embryoid bodies (EBs) were formed and were induced to NPCs in N2 selection medium plus fibronectin. Praxiology and immunohistochemistry methods were used to observe the survival, differentiation, and therapeutic effect of NPCs after grafted into the striatum of PD rats. We found that mouse ESc were differentiated into nestin-positive NPCs 6 days after the EBs formed and cultured in the N2 selection medium. The number of survival NPCs was increased significantly by fibronectin. About 23.76+/-2.29% of remaining cells were tyrosine hydroxylase (TH)-positive 12 days after NPCs were cultured in N2 selective medium. The survival rates of NPCs were 2.10+/-0.41% and about 90.90+/-3.00% of the engrafted NPCs were TH-positive 6 weeks after transplantation into the striatum of PD rats. The rotation of PD rats was relieved 3 weeks after the NPCs transplantation and this effect was kept for at least 6 weeks. It suggests that most of the survival NPCs derived from ES cells differentiated into TH-positive neurons after grafted into the striatum of PD rats, which produces therapeutic effect on PD.  相似文献   

19.
Pluripotent embryonic stem (ES) cells are the most versatile cells, with the potential to differentiate into all types of cell lineages including neural precursor cells (NPCs), which can be expanded in large numbers for significant periods of time to provide a reliable cell source for transplantation in neurodegenerative disorders such as Parkinson’s disease (PD). In the present study, we used the MESPU35 mouse ES cell line, which expresses enhanced green fluorescent protein that enables one to distinguish between transplanted cells and cells of host origin. Embryoid bodies (EBs) were formed and were induced to NPCs in N2 selection medium plus fibronectin. Praxiology and immunohistochemistry methods were used to observe the survival, differentiation, and therapeutic effect of NPCs after grafted into the striatum of PD rats. We found that mouse ESc were differentiated into nestin-positive NPCs 6 days after the EBs formed and cultured in the N2 selection medium. The number of survival NPCs was increased significantly by fibronectin. About 23.76 ± 2.29% of remaining cells were tyrosine hydroxylase (TH)-positive 12 days after NPCs were cultured in N2 selective medium. The survival rates of NPCs were 2.10 ± 0.41% and about 90.90 ± 3.00% of the engrafted NPCs were TH-positive 6 weeks after transplantation into the striatum of PD rats. The rotation of PD rats was relieved 3 weeks after the NPCs transplantation and this effect was kept for at least 6 weeks. It suggests that most of the survival NPCs derived from ES cells differentiated into TH-positive neurons after grafted into the striatum of PD rats, which produces therapeutic effect on PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号