首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that approximately 20% of the tissue is hypoxic with an oxygen tension of <0.5 mmHg when the buffer is equilibrated with 95% oxygen to give an arterial oxygen tension of over 600 mmHg. The addition of red blood cells to give a hematocrit of only 5% prevents tissue hypoxia. It is incorrect to assume that the usual buffer-perfused Langendorff heart preparation is adequately oxygenated for flows in the range of < or =10 ml. min-1. ml tissue-1.  相似文献   

2.
Rhabdomyolysis-induced renal failure represents up to 15% of all cases of acute renal failure. Many studies over the past 4 decades have demonstrated that accumulation of myoglobin in the kidney is central in the mechanism leading to kidney injury. However, some discussion exists regarding the mechanism mediating this oxidant injury. Although the free-iron-catalyzed Fenton reaction has been proposed to explain the tissue injury, more recent evidence strongly suggests that the main cause of oxidant injury is myoglobin redox cycling and generation of oxidized lipids. These molecules can propagate tissue injury and cause renal vasoconstriction, two of the three main conditions associated with acute renal failure. This review presents the evidence supporting the two mechanisms of oxidative injury, describes the central role of myoglobin redox cycling in the pathology of renal failure associated with rhabdomyolysis, and discusses the value of therapeutic interventions aiming at inhibiting myoglobin redox cycling for the treatment of rhabdomyolysis-induced renal failure.  相似文献   

3.
 The equations governing oxygen transport from blood to tissue are presented for a cylindrical tissue compartment, with blood flowing along a co–axial cylindrical capillary inside the tissue. These governing equations take account of: (i) the non–linear reactions between oxygen and haemoglobin in blood and between oxygen and myoglobin in tissue; (ii) diffusion of oxygen in both the axial and radial directions; and (iii) convection of haemoglobin and plasma in the capillary. A non–dimensional analysis is carried out to assess some assumptions made in previous studies. It is predicted that: (i) there is a boundary layer for oxygen partial pressure but not for haemoglobin or myoglobin oxygen saturation close to the inflow boundary in the capillary; (ii) axial diffusion may not be neglected everywhere in the model; (iii) the reaction between oxygen and both haemoglobin and myoglobin may be assumed to be instantaneous in nearly all cases; and (iv) the effect of myoglobin is only significant for tissue with a low oxygen partial pressure. These predictions are validated by solving the full equations numerically and are then interpreted physically. Received: 13 October 2000 / Revised version: 12 June 2001 / Published online: 17 May 2002  相似文献   

4.
Cell cultures of cardiac, pectoral, and thigh muscle of chick embryos synthesized myoglobin, as measured by incorporation of radioactive lysine detected by radioimmunoprecipitation. Liver and skin cultures, although active in protein synthesis, failed to demonstrate myoglobin synthesis. Puromycin inhibited myoglobin synthesis by the cell cultures. The electrophoretic characteristics of the myoglobin antigen synthesized by thigh and pectoral muscle were identical. Myglobin synthesizing progenitor cells attached to plastic dishes in 1 hr, but not completely in 0.5 hr. Cells, unattached at 0.5 hr, were enriched in myoglobin synthesizing cells. Incorporation of lysine-U-14C into myoglobin was maximal in confluent cultures and its increase paralleled the increase of cell fusion in the cultures. The ability of pectoral, white muscle to synthesize myoglobin in a manner equivalent to that of cardiac tissue was unexpected because of its failure to synthesize myoglobin in vivo and may indicate that factors in the whole organism may regulate the expression of this muscle cell's capabilities.  相似文献   

5.
Chick embryos in ovo incorporated radioactivity from lysine-U-14C into myoglobin, as measured by an immunoprecipitation technique. The most consistent results were obtained by injection of the precursor into the yolk sac fluid.Incorporation, or apparent myoblobin synthesis, occurred in cardiac and skeletal muscle but not in liver, although incorporation of amino acid into total soluble proteins was equivalent in all tissues studied. Synthesis was highest in cardiac muscle and appeared there first in younger embryos. Myoglobin synthesis was detectable in the heart of embryos as early as 6 days of age and rose with age thereafter. Myoglobin synthesis appeared later and at lower levels in skeletal muscle.In vitro at neutral pH, tissue extracts of liver and muscle possessed only slight properties of myoglobin degradation.Using nonradioactive precipitin techniques, sensitive to 5–10 μg/ml, myoglobin was detected in embryonic heart muscle by week 2 of life and rose in content thereafter. Two of 8 embryos had trace amounts in thigh muscle near the time of hatching, and no embryos possessed measurable amounts of myoglobin in liver tissue or in pectoral skeletal muscle. Adult birds possessed equivalent amounts of myoglobin in heart and thigh muscle while pectoral muscle and liver tissue had no detectable myoglobin content.  相似文献   

6.
The objective of this study was to investigate the effect of arteriolar vasomotion on oxygen transport from capillary networks. A computational model was used to calculate blood flow and oxygen transport from a simulated network of striated muscle capillaries. For varying tissue oxygen consumption rates, the importance of the frequency and amplitude of vasomotion-induced blood flow oscillations was studied. The effect of myoglobin on oxygen delivery during vasomotion was also examined. In the absence of myoglobin, it was found that when consumption is high enough to produce regions of hypoxia under steady flow conditions, vasomotion-induced flow oscillations can significantly increase tissue oxygenation and decrease oxygen transport heterogeneity. The largest effect was seen for low-frequency, high-amplitude oscillations (1.5-3 cycles min(-1), 90% of steady-state velocity). By contrast, at physiological tissue myoglobin concentrations, vasomotion did not improve tissue oxygenation. This unexpected finding is due to the buffering effect of myoglobin, suggesting that in highly aerobic muscles short-term storage of oxygen is more important than the possibility of increasing transport through vasomotion.  相似文献   

7.
Crystal have been grown of myoglobin produced in Escherichia coli from a synthetic gene, and the structure has been solved to 1.9 Å resolution. The space group of the crystals is P6, which is different from previously solved myoglobin crystal forms. The synthetic myoglobin is essentially identical to myoglobin isolated from sperm whale tissue, except for the retention of the initiator methionine at the N-terminus and the substitution of asparagine for aspartic acid at position 122. Superposition of the coordinates of native and synthetic sperm whale myoglobins reveals only minor changes in the positions of main chain atoms and roeientation of some surface side chains. Crystals of variant of the “synthetic” myoglobin have also been grown for structural analysis of the role of key amino acid residues in ligand and specificity.  相似文献   

8.
9.
PERMEABILITY OF MUSCLE CAPILLARIES TO EXOGENOUS MYOGLOBIN   总被引:17,自引:11,他引:6       下载免费PDF全文
Whale skeletal muscle myoglobin (mol wt 17,800; molecular dimensions 25 x 34 x 42 Å) was used as a probe molecule for the pore systems of muscle capillaries. Diaphragms of Wistar-Furth rats were fixed in situ at intervals up to 4 h after the intravenous injection of the tracer, and myoglobin was localized in the tissue by a peroxidase reaction. Gel filtration of plasma samples proved that myoglobin molecules remained in circulation in native monomeric form. At 30–35 s postinjection, the tracer marked ~75% of the plasmalemmal vesicles on the blood front of the endothelium, 15% of those located inside and none of those on the tissue front. At 45 s, the labeling of vesicles in the inner group reached 60% but remained nil for those on the tissue front. Marked vesicles appeared on the latter past 45 s and their frequency increased to ~80% by 60–75 s, concomitantly with the appearance of myoglobin in the pericapillary spaces. Significant regional heterogeneity in initial labeling was found in the different segments of the endothelium (i.e., perinuclear cytoplasm, organelle region, cell periphery, and parajunctional zone). Up to 60 s, the intercellular junctions and spaces of the endothelium were free of myoglobin reaction product; thereafter, the latter was detected in the distal part of the intercellular spaces in concentration generally equal to or lower than that prevailing in the adjacent pericapillary space. The findings indicate that myoglobin molecules cross the endothelium of muscle capillaries primarily via plasmalemmal vesicles. Since a molecule of this size is supposed to exit through both pore systems, our results confirm the earlier conclusion that the plasmalemmal vesicles represent the large pore system; in addition, they suggest that the same structures are, at least in part, the structural equivalent of the small pore system of this type of capillaries.  相似文献   

10.
For marine mammals, the ability to tolerate apnea and make extended dives is a defining adaptive trait, facilitating the exploitation of marine food resources. Elevated levels of myoglobin within the muscles are a consistent hallmark of this trait, allowing oxygen collected at the surface to be stored in the muscles and subsequently used to support extended dives. In mysticetes, the largest of marine predators, details on muscular myoglobin levels are limited. The developmental trajectory of muscular myoglobin stores has yet to be documented and any physiological links between early behavior and the development of muscular myoglobin stores remain unknown. In this study, we used muscle tissue samples from stranded mysticetes to investigate these issues. Samples from three different age cohorts and three species of mysticetes were included (total sample size = 18). Results indicate that in mysticete calves, muscle myoglobin stores comprise only a small percentage (17–23%) of conspecific adult myoglobin complements. Development of elevated myoglobin levels is protracted over the course of extended maturation in mysticetes. Additionally, comparisons of myoglobin levels between and within muscles, along with details of interspecific differences in rates of accumulation of myoglobin in very young mysticetes, suggest that levels of exercise may influence the rate of development of myoglobin stores in young mysticetes. This new information infers a close interplay between the physiology, ontogeny and early life history of young mysticetes and provides new insight into the pressures that may shape adaptive strategies in migratory mysticetes. Furthermore, the study highlights the vulnerability of specific age cohorts to impending changes in the availability of foraging habitat and marine resources.  相似文献   

11.
Kundu S  Hargrove MS 《Proteins》2003,50(2):239-248
Leghemoglobins facilitate diffusion of oxygen through root tissue to a bacterial terminal oxidase in much the same way that myoglobin transports oxygen from blood to muscle cell mitochondria. Leghemoglobin serves an additional role as an oxygen scavenger to prevent inhibition of nitrogen fixation. For this purpose, the oxygen affinity of soybean leghemoglobin is 20-fold greater than myoglobin, resulting from an 8-fold faster association rate constant combined with a 3-fold slower dissociation rate constant. Although the biochemical mechanism used by myoglobin to bind oxygen has been described in elegant detail, an explanation for the difference in affinity between these two structurally similar proteins is not obvious. The present work demonstrates that, despite their similar structures, leghemoglobin uses methods different from myoglobin to regulate ligand affinity. Oxygen and carbon monoxide binding to a comprehensive set of leghemoglobin distal heme pocket mutant proteins in comparison to their myoglobin counterparts has revealed some of these mechanisms. The "distal histidine" provides a crucial hydrogen bond to stabilize oxygen in myoglobin but has little effect on bound oxygen in leghemoglobin and is retained mainly for reasons of protein stability and prevention of heme loss. Furthermore, soybean leghemoglobin uses an unusual combination of HisE7 and TyrB10 to sustain a weak stabilizing interaction with bound oxygen. Thus, the leghemoglobin distal heme pocket provides a much lower barrier to oxygen association than occurs in myoglobin and oxygen dissociation is regulated from the proximal heme pocket.  相似文献   

12.
A novel, simple, rapid, sensitive and reproducible microassay is described for determination of myoglobin and hemoglobin content of myocardial and skeletal muscle biopsy specimens from various mammals, birds and fish. As little as 50 mg of tissue is needed and myoglobin concentrations lower than 1 mg% can be detected. Myoglobin and hemoglobin are separated at alkaline pH by ammonium sulfate extraction followed by ultrafiltration. Heme content is determined by absorption of the Soret band when the hemoprotein extract is visibly colored or more sensitively by its peroxidase activity when the extract has low color. The heme reacts with tertiary-butyl hydroperoxide and orthotolidine to generate a blue color. Hemoglobin content is correlated with myoglobin content and is related to aerobic capacity and blood flow to the tissue. Myoglobin content varied over 5 orders of magnitude up to 7 per cent of the weight of tissue, whereas hemoglobin content varied over 2 orders of magnitude up to 6 per cent of tissue weight. Myoglobin content is increased in species with high basal metabolic rate, high physical activity, prolonged diving capacity, fatigue resistance, and red muscle, whereas it is decreased in white muscle, iron-deficient animals, animals with sedentary lifestyles, and in animals and tissues with small fiber diameters such as avian or fish hearts.  相似文献   

13.
A useful technique in studying the saturation of hemoglobin in erythrocytes or myoglobin in tissue is cryophotometry, in which tissue is frozen for later spectrophotometric analysis. A general question associated with this technique is whether the freezing process alters the chemical state. This paper presents a theoretical analysis of the simplest model relevant to that question. We study the effect of rapid cooling on a spatially homogeneous chemical reaction. The analysis shows that changes during freezing are negligible near the boundary to which the heat sink is applied, but can be significant deeper in the sample. The distance from the boundary at which the changes during freezing become appreciable can be expressed simply in terms of the chemical reaction rates and the thermal diffusivity of the tissue. Detailed results are given for the case of oxygen and myoglobin in skeletal muscle.  相似文献   

14.
A high-performance liquid chromatographic (HPLC) procedure is described for the determination of myoglobin in extracts of small samples of tissue from the three different fibre types in the swimming muscles of three species of sharks, Etmopterus spinax, Galeus melastomus and Scyliorhinus canicula . The method, which is based on the separation of myoglobin from haemoglobin from haemoglobin based on HPLC using a gel permeation chromatography column, has a detection limit of about 3 pmol myoglobin (Mb). In addition it has the added advantage of specific identification by its Soret band absorption and quantification. In all three species, the three fibre types of the muscle are completely separated and can be isolated at a high degree of purity. In red fibres the myoglobin content varied between 565 nmol mg−1 wet weight ( Scyliorhinus ) and 170 nmol mg−1 wet weight ( Galeus ). Intermediate fibres contained from 215 to 57, and white fibres from 11 to zero nmol mg−1 wet weight. The myoglobin content is closely correlated to the vascularization as well as to the amounts of mitochondria in the different fibre types.  相似文献   

15.
The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.  相似文献   

16.
The expression of the inducible haem oxygenase (HO-1) gene was examined in different skeletal muscles. Rats were treated with haemin and a time course of HO-1 mRNA expression was determined in soleus and extensor digitorum longus (EDL) muscles. Fibre type composition and tissue myoglobin content were also measured. We found that HO-1 mRNA expression markedly increased in soleus (type I fibres) muscle but was only slightly affected in EDL (type II fibres). HO-1 expression directly correlated with both percentage of red fibres and tissue myoglobin. These data demonstrate that HO-1 gene expression follows a fibre type-specific pattern which might indicate an important role for this protein in the maintenance of skeletal muscle function.  相似文献   

17.
In vitro activity of the anaerobic enzymes phosphofructokinase and lactic dehydrogenase from axial muscle tissue of Coluber constrictor, Crotalus viridis and Lichanura roseofusca was shown to correlate with levels of lactate production during activity by these snakes. Additionally, gross and histological lung structure and axial muscle myoglobin concentration were investigated in these species. Coluber was shown to have the most complex lung structure and highest muscle myoglobin content. These are interpreted to be correlated with high aerobic scope in Coluber. Finally, the ophidian saccular lung is postulated to assist in maintenance of high tidal volume.  相似文献   

18.
Measuring local tissue temperature is critical in stablishing a rational approach for hyperthermia treatment of tumors. We have found that the heme signals of myoglobin provide a unique basis for NMR thermometry in vivo. In particular the 5-methyl heme signal of MbCN exhibits a sharp, temperature-dependent resonance that is distinguishable in the tissue spectrum. Its calibrated chemical shift can then reflect the local tissue temperature in vivo.  相似文献   

19.
A non-linear partial differential equation is analyzed using multiple scale techniques and similarity transformations in order to examine the role of hemoglobin and myoglobin in facilitating oxygen transport to tissue.Supported by NSF Grant DCB 8902472  相似文献   

20.
The small heat-shock protein (sHsp), alpha-crystallin, acts as a molecular chaperone by interacting with destabilized 'substrate' proteins to prevent their precipitation from solution under conditions of stress. alpha-Crystallin and all sHsps are intracellular proteins. Similarly to other chaperones, the 'substrate' protein is in an intermediately folded, partly structured molten globule state when it interacts and complexes with alpha-crystallin. In this study, stable molten globule states of the cytosolic proteins, gamma-crystallin and myoglobin, have been prepared. Within the lens, gamma-crystallin naturally interacts with alpha-crystallin and myoglobin and alpha-crystallin are present together in muscle tissue. The molten globule states of gamma-crystallin and myoglobin were prepared by reacting gamma-crystallin with glucose 6-phosphate and by removing the haem group of myoglobin. Following spectroscopic characterisation of these modified proteins, their interaction with alpha-crystallin was examined by a variety of spectroscopic and protein chemical techniques. In both cases, there was no interaction with alpha-crystallin that led to complexation. It is concluded that alpha-crystallin does not recognise stable molten globule states of cytosolic 'substrate' proteins and only interacts with molten globule states of proteins that are on the irreversible pathway towards an aggregated and precipitated form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号