首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Xenopus nuclear factor 7 (xnf7) is a maternal gene product that functi ons in dorsal/ventral patterning of the embryo. The xnf7 protein is stored in the oocyte nucleus germinal vesicle in a hypophosphorylated state. At oocyte maturation, xnf7 is hyperphosphorylated and released into the cytoplasm, where it is anchored until the midblastula stage, where it is dephosphorylated and enters the nucleus. We demonstrated that cytoplasmic anchoring of xnf7 was regulated by changes in the phosphorylation status of four threonines within two sites, site 1 (Thr-103) and site 2 (Thr-209, Thr-212, and Thr-218), which function in an additive manner. A mutant form of xnf7 (xnf7thr-glu) in which the threonines at sites 1 and 2 were mutated to glutamic acids to mimic a permanent state of phosphorylation was retained in the cytoplasm in oocytes and embryos through the gastrula stage. The cytoplasmic form of xnf7 was detected in a large 670-kDa protein complex probably consisting of xnf7 and several other unknown protein components. Anchoring of xnf7 was not dependent on association with either microtubule or microfilament components of the cytoskeleton, since treatment with cytochalasin B and nocodazole did not affect cytoplasmic retention. Both wild-type xnf7 and xnf7thr-glu form dimers in the yeast two-hybrid system; however, homodimerization was not required for cytoplasmic retention. We suggest that the cytoplasmic retention of xnf7 depends on the phosphorylation state of the protein whereas the cytoplasmic anchoring machinery appears to be constitutively present in oocytes and throughout development until the gastrula stage.  相似文献   

2.
3.
4.
5.
6.
XFG 5-1 is a Krüppel-type Xenopus zinc finger protein with specific RNA homopolymer binding activity in vitro. In the oocyte, the protein is distributed between nucleus and cytoplasm; the nuclear fraction, not the cytoplasm, contains phosphorylated isoform(s) of XFG 5-1. In vitro phosphorylation by use of oocyte/egg extracts or purified casein kinase II is specific to the amino-terminal portion of the protein. The carboxy-terminal zinc finger domain contains a signal sufficient for nuclear transport. Overexpression of either full length XFG 5-1 or of the carboxy-terminal portion alone, which maintains RNA binding and nuclear import activities, was achieved in Xenopus embryos by mRNA injection. This treatment did not result in impaired regulation of development, suggesting that XFG 5-1 functions in a way distinct from the mode of action exemplified in the Drosophila zinc finger protein Krüppel.  相似文献   

7.
Cyclins are regulatory subunits that bind to and activate catalytic Cdks. Cyclin E associates with Cdk2 to mediate the G1/S transition of the cell cycle. Cyclin E is overexpressed in breast, lung, skin, gastrointestinal, cervical, and ovarian cancers. Its overexpression correlates with poor patient prognosis and is involved in the etiology of breast cancer. We have been studying how cyclin E is normally downregulated during development in order to determine if disruption of similar mechanisms could either contribute to its overexpression in cancer, or be exploited to decrease its expression. In Xenopus laevis embryos, cyclin E protein level is high and constant until its abrupt destabilization by an undefined mechanism after the 12th cell cycle, which corresponds to the midblastula transition (MBT) and remodeling of the embryonic to the adult cell cycle. Since degradation of mammalian cyclin E is regulated by the ubiquitin proteasome system and is phosphorylation dependent, we examined the role of phosphorylation in Xenopus cyclin E turnover. We show that similarly to human cyclin E, phosphorylation of serine 398 and threonine 394 plays a role in cyclin E turnover at the MBT. Immunofluorescence analysis shows that cyclin E relocalizes from the cytoplasm to the nucleus preceding its degradation. When nuclear import is inhibited, cyclin E stability is markedly increased after the MBT. To investigate whether degradation of Xenopus cyclin E is mediated by the proteasomal pathway, we used proteasome inhibitors and observed a progressive accumulation of cyclin E in the cytoplasm after the MBT. Ubiquitination of cyclin E precedes its proteasomal degradation at the MBT. These results show that cyclin E destruction at the MBT requires both phosphorylation and nuclear import, as well as proteasomal activity.  相似文献   

8.
The matrix (M1) protein of influenza virus is a major structural component, involved in regulation of viral ribonucleoprotein transport into and out of the nucleus. Early in infection, M1 is distributed in the nucleus, whereas later, it is localized predominantly in the cytoplasm. Using immunofluorescence microscopy and the influenza virus mutant ts51, we found that at the nonpermissive temperature M1 was retained in the nucleus, even at late times after infection. In contrast, the viral nucleoprotein (NP), after a temporary retention in the nucleus, was distributed in the cytoplasm. Therefore, mutant M1 supported the release of the viral ribonucleoproteins from the nucleus, but not the formation of infectious virions. The point mutation in the ts51 M1 gene was predicted to encode an additional phosphorylation site. We observed a substantial increase in the incorporation of 32Pi into M1 at the nonpermissive temperature. The critical role of this phosphorylation site was demonstrated by using H89, a protein kinase inhibitor; it inhibited the expression of the mutant phenotype, as judged by M1 distribution in the cell. Immunofluorescence analysis of ts51-infected cells after treatment with H89 showed a wild-type phenotype. In summary, the data indicated that the ts51 M1 protein was hyperphosphorylated at the nonpermissive temperature and that this phosphorylation was responsible for its aberrant nuclear retention.  相似文献   

9.
10.
Nucleocytoplasmic transport of 5S ribosomal RNA in Xenopus oocytes occurs in the context of small, non-ribosomal RNPs. The complex with the zinc finger protein TFIIIA (7S RNP) is exported from the nucleus and stored in the cytoplasm, whereas the complex with the ribosomal protein L5 (5S RNP) shuttles between the nucleus and the cytoplasm. Nuclear import- and export-signals appear to reside within the protein moiety of these RNPs. Import of TFIIIA is inhibited by RNA binding, whereas nuclear transfer of L5 is not influenced by RNA binding. We propose that the export capacity of both, TFIIIA and L5, is regulated by the interaction with 5S ribosomal RNA.  相似文献   

11.
Nuclear retention of RNA as a mechanism for localization.   总被引:13,自引:0,他引:13       下载免费PDF全文
Two mutant RNAs, one derived from tRNA(imet), the second from U1 snRNA, that are defective in export from the nucleus to the cytoplasm have been studied. In both cases, the RNAs are shown to be transport competent but prevented from leaving the nucleus by interaction with saturable binding sites. This contradicts previous hypotheses to explain the behavior of the tRNA mutant, and highlights a general problem in using mutant RNAs to study nuclear export. In the case of these mutants, it is argued that nuclear retention is likely to be artifactual. However, the additional example of U6 snRNA is described. In this case, nuclear retention appears to be a physiological mechanism by which intranuclear localization is achieved. Evidence that the site of interaction with the La protein in U6 snRNA is important for its nuclear retention is presented.  相似文献   

12.
Xenopus nuclear factor XNF7, a maternally expressed protein, functions in patterning of the embryo. XNF7 contains a number of defined protein domains implicated in the regulation of some developmental processes. Among these is a tripartite motif comprising a zinc-binding RING finger and B-box domain next to a predicted alpha-helical coiled-coil domain. Interestingly, this motif is found in a variety of protein including several proto-oncoproteins. Here we describe the solution structure of the XNF7 B-box zinc-binding domain determined at physiological pH by 1H NMR methods. The B-box structure represents the first three-dimensional structure of this new motif and comprises a monomer have two beta-strands, two helical turns and three extended loop regions packed in a novel topology. The r.m.s. deviation for the best 18 structures is 1.15 A for backbone atoms and 1.94 A for all atoms. Structure calculations and biochemical data shows one zinc atom ligated in a Cys2-His2 tetrahedral arrangement. We have used mutant peptides to determine the metal ligation scheme which surprisingly shows that not all of the seven conserved cysteines/histidines in the B-box motif are involved in metal ligation. The B-box structure is not similar in tertiary fold to any other known zinc-binding motif.  相似文献   

13.
We have identified a novel RING-B-box-coiled-coil (RBCC) protein (MAIR for macrophage-derived apoptosis-inducing RBCC protein) that consists of an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil domain, and a B30.2 domain. MAIR mRNA was expressed widely in mouse tissues and was induced by macrophage colony-stimulating factor in murine peritoneal and bone marrow macrophages. MAIR protein initially showed a granular distribution predominantly in the cytoplasm. The addition of zinc to transfectants containing MAIR cDNA as part of a heavy metal-inducible vector caused apoptosis of the cells characterized by cell fragmentation; a reduction in mitochondrial membrane potential; activation of caspase-7, -8, and -9, but not caspase-3; and DNA degradation. We also found that the RING finger and coiled-coil domains were required for MAIR activity by analysis with deletion mutants.  相似文献   

14.
15.
The Cdc7 serine/threonine kinase activates the initiation of DNA replication by phosphorylating MCM proteins that are bound to the origins of DNA replication. We reported previously that human Cdc7 nuclear import is mediated directly by importin-beta through its binding to the Cdc7 nuclear localization sequence (NLS). Here, we report that human Cdc7 nuclear localization is regulated by two additional elements: nuclear retention (NRS) and export sequences (NES). Cdc7 proteins imported into the nucleus are retained in the nucleus by associating with chromatin, for which NRS-(306-326) is essential. Importantly, this binding appears to be specific to the origin of DNA replication, because the binding of wild-type Cdc7 to origin is 2.4-fold higher than to non-origin DNA. Furthermore, an NRS-defective Cdc7 mutant could not be retained in the nucleus, although it was imported into the nucleus normally. Together, our data suggest that NRS plays an important role in the activation of DNA replication by Cdc7. The Cdc7 proteins unassociated with chromatin are bound by CRM1 via two NES elements: NES1 at 458-467 within kinase insert III, and NES2 at 545-554 within the kinase IX domain. The primary function of the Cdc7-CRM1 association may be to translocate nuclear Cdc7 to the cytoplasm. However, the binding of CRM1 with Cdc7 at NES2 raises an interesting possibility that CRM1 may also down-regulate Cdc7 by masking its kinase domain.  相似文献   

16.
17.
By microinjecting purified glutathione S-transferase linked to all or parts of herpes simplex virus type 1 US11 protein into either the nucleus or the cytoplasm, we have demonstrated that this nucleolar protein exhibits a new type of localization signal controlling both retention in nucleoli and export to the cytoplasm. Saturated mutagenesis combined with computer modeling allowed us to draw the fine-structure map of this domain, revealing a new proline-rich motif harboring both activities, which are temperature dependent and regulated by phosphorylation. Finally, crossing the nuclear pore complex from the cytoplasm to the nucleus is an energy-dependent process for US11 protein, while getting to nucleoli through the nucleoplasm is energy independent.  相似文献   

18.
APOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing. In this report we tested whether ACF may have the ability to regulate nuclear export of apoB mRNA to the sites of translation in the cytoplasm. Using mouse models of obesity-induced insulin resistance and primary hepatocyte cultures we demonstrated that both nuclear retention of ACF and apoB mRNA editing were reduced in the livers of hyperinsulinemic obese mice relative to lean controls. Coincident with an increase in the recovery of ACF in the cytoplasm was an increase in the proportion of total cellular apoB mRNA recovered in cytoplasmic extracts. Cytoplasmic ACF from both lean controls and obese mouse livers was enriched in endosomal fractions associated with apoB mRNA translation and ApoB lipoprotein assembly. Inhibition of ACF export to the cytoplasm resulted in nuclear retention of apoB mRNA and reduced both intracellular and secreted ApoB protein in primary hepatocytes. The importance of ACF for modulating ApoB was supported by the finding that RNAi knockdown of ACF reduced ApoB secretion. An additional discovery from this study was the finding that leptin is a suppressor ACF expression. Dyslipidemia is a common pathology associated with insulin resistance that is in part due to the loss of insulin controlled secretion of lipid in ApoB-containing very low density lipoproteins. The data from animal models suggested that loss of insulin regulated ACF trafficking and leptin regulated ACF expression may make an early contribution to the overall pathology associated with very low density lipoprotein secretion from the liver in obese individuals.  相似文献   

19.
Many RNA-binding proteins (RBPs) dynamically shuttle between the nucleus and the cytoplasm, often exerting different functions in each compartment. Therefore, the nucleo-cytoplasmic distribution of RBPs has a strong impact on their activity. Here we describe the localization and the shuttling properties of the tandem zinc finger RBP dTIS11, which is the Drosophila homolog of mammalian TIS11 proteins. Drosophila and mammalian TIS11 proteins act as destabilizing factors in ARE-mediated decay. At equilibrium, dTIS11 is concentrated mainly in the cytoplasm. We show that dTIS11 is a nucleo-cytoplasmic shuttling protein whose nuclear export is mediated by the exportin CRM1 through the recognition of a nuclear export signal (NES) located in a different region comparatively to its mammalian homologs. We also identify a cryptic Transportin-dependent PY nuclear localization signal (PY-NLS) in the tandem zinc finger region of dTIS11 and show that it is conserved across the TIS11 protein family. This NLS partially overlaps the second zinc finger ZnF2. Importantly, mutations disrupting the capacity of the ZnF2 to coordinate a Zinc ion unmask dTIS11 and TTP NLS and promote nuclear import. All together, our results indicate that the nuclear export of TIS11 proteins is mediated by CRM1 through diverging NESs, while their nuclear import mechanism may rely on a highly conserved PY-NLS whose activity is negatively regulated by ZnF2 folding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号