首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis and evaluation of novel azetidine lincosamides 1 are described. Eleven new (3-trans-alkyl)azetidine-2-carboxylic acids were synthesized via alkylation of N-TBS-4-oxo-azetidine-2-carboxylic acid and subsequent elaboration then coupled to 7-chloro-1-methylthio-lincosamine. The resulting lincosamides differ from the drug clindamycin in both the size of the ring and the position/structure of the alkyl side-chain. SAR within the series was explored with attention to alkyl variants in positions 1 and 3 of the azetidine ring.  相似文献   

2.
The effect of tryptophan on the biosynthesis of proline has been investigated. Cells of Daucus carota grown in B5 medium supplemented with 5×10–4M tryptophan acquired the ability to grow in the presence of inhibitory concentrations of azetidine-2-carboxylic acid, an analog of proline. When trp was added to carrot cell cultures at sub-growth inhibiting concentrations, overproduction of intracellular free proline was observed. An increase was also observed for lys, his, ala, leu and phe. Likewise, the addition of asparagine, glutamic acid and phenylalanine to the medium stimulated the intracellular increase of free proline and other amino acids.Abbreviations A2CA azetidine-2-carboxylic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - 5MT 5-methyltryptophan - P5C pyrroline-5-carboxylic acid - f.wt. fresh weight - d.wt. dry weight  相似文献   

3.
Amino acid analogs, which can be incorporated into nascent peptide chains were used in cultures of endocrine cells from canine pancreas to study the effect on processing of the metabolically labeled precursor for pancreatic polypeptide. Analogs for basic amino acids, canavanine, and aminoethylcysteine prevented the di-basic processing of the prohormone. The polar leucine analog, beta-hydroxyleucine, only partially perturbed the function and cleavage of the signal peptide but efficiently and unexpectedly blocked the dibasic cleavage of the prohormone. Other nonbasic amino acid analogs, beta-hydroxynorvaline and azetidine-2-carboxylic acid, which only could be incorporated into the prohormone at a distance from the processing site, also prevented dibasic cleavage of the prohormone. Although there are no phenylalanine residues in the prohormone, analogs for this amino acid, fluoro-phenylalanine and particularly phenylserine, could also block the processing of the prohormone at the dibasic site. This effect was prevented by addition of a small quantity of phenylalanine. It is concluded that amino acid analogs can interfere with precursor processing through altering both the primary and the secondary structure of the precursor but also through incorporation into cosynthesized protein(s) which are necessary for the precursor processing.  相似文献   

4.
G Riccardi  S Sora    O Ciferri 《Journal of bacteriology》1981,147(3):1002-1007
Mutants of Spirulina platensis resistant to 5-fluorotryptophan, beta-3-thienyl-alanine, ethionine, p-fluorophenylalanine, or azetidine-2-carboxylic acid were isolated. Some of these mutants appeared to be resistant to more than one analog and to overproduce the corresponding amino acids. A second group was composed of mutants that were resistant to one analog only. Of the latter mutants, one resistant to azetidine-2-carboxylic acid was found to overproduce proline only, whereas one resistant to fluorotryptophan and one resistant to ethionine did not overproduce any of the tested amino acids.  相似文献   

5.
The lack of the positive band at around 226 nm in the CD spectra of poly(prolyl-azetidine-2-carbonyl-proline) in trifluoroethanol and of poly(azetidine-2-carbonyl-prolyl-azetidine-2-carboxylic) acid in F3EtOH and water, the hyperchromism of the absorption maximum at about 202 nm, and the extremely small intensity of the Cβ-Pro, Cγ-Pro, and Cβ-Aze signals for the cis peptide bonds in the 13C nmr spectrum of poly(Pro-Aze-Pro) in F3EtOH indicate that both polyproline analogs exist as disordered chains in this solvent, the trans peptide group being maintained. The disordering of the chains is attributed to an increase in the accessible range of ψ due to the reduced dimensions of the square ring of L -azetidine-2-carboxylic acid residue relative to the pyrrolidine ring of proline and to strong interactions of the haloalcohol with the peptide groups of the chains.  相似文献   

6.
M Mutter  H Mutter  R Uhmann  E Bayer 《Biopolymers》1976,15(5):917-927
The conformation of polyethylene glycol-bound peptides, synthesized by the liquid-phase method, was investigated. This marcromolecular C-terminal protecting group is transparent in the visible and the ultraviolet range to 190 nm and solubilizes peptides in many different solvents. The CD spectra of the polymer-bound myoglobin sequence 66–73 and of the biologically active undecapeptide “substance P” were measured in each step of the synthesis. In both examples the formation of a secondary structure during the growth of the peptide chain was found. In the hydrophobic octapeptide containing the myoglobin sequence 66–73, the influence of either the blocked or the free N-terminal amino group on the conformation was observed. The blocked octapeptide in trifluoroethanol showed a higher degree of α-helix contribution than in its free state. The conformation of the polyethylene glycol-bound nona- and decaalanine in trifluoroethanol and water was determined. The peptide with a free amino end group has β-conformation in trifluoroethanol as well as in water. The corresponding N-Boc-protected derivatives show helical structure. The amino end group has a decisive influence on the formation of β-structure. The method of CD investigation of polymer-bound peptide sequences during the peptide synthesis in solution enables one to determine the influence of protecting groups and the chain end of a peptide on its conformation. It is also possible to study the relationship between the secondary structure, the chain length, and the kinetic of the coupling reaction in different solvents. Since the crystallization method for the liquid-phase peptide synthesis allows one to synthesize peptides in very short time, a new method of studying peptide conformations is opened.  相似文献   

7.
The effects of L-azetidine 2-carboxylic acid on growth and proline metabolism in a proline-requiring auxotroph of Escherichia coli are described. The homologue inhibited growth of the wild type and it, alone, did not substitute effectively for proline as a growth supplement for the mutant. In medium containing 0.05 mM proline, the addition of increasing amounts of homologue progressively inhibited growth of the wild type but stimulated growth of the mutant at homologue: proline ratios of 10 : 1 and 50 : 1. This suggested that the homologue exerted a “sparing effect” on proline in the mutant.The incorporation of L-[U-14C]proline and L-[3H]azetidine 2-carboxylic acid into hot trichloroacetic acid-insoluble material in the mutant was measured. Amino acid analysis of the insoluble material from cells incubated with radiolabeled proline alone revealed that proline was partially degraded and metabolized to other amino acids prior to incorporation into protein. The addition of unlabeled homologue to the incubation medium significantly reduced proline catabolism, suggesting that the homologue exerted a sparing effect on proline in this mutant. In medium containing unlabeled proline and radiolabeled L-azetidine 2-carboxylic acid, the homologuewas incorporated both intact and partially degraded prior to incorporation into protein. Alanine was the major L-azetidine 2-carboxylic acid catabolite.  相似文献   

8.
The effects of L-azetidine 2-carboxylic acid on growth and proline metabolism in a proline-requiring auxotroph of Escherichia coli are described. The homologue inhibited growth of the wild type and it, alone, did not substitute effectively for proline as a growth supplement for the mutant. In medium containing 0.05 mM proline, the addition of increasing amounts of homologue progressively inhibited growth of the wild type but stimulated growth of the mutant at homologue: proline ratios of 10 : 1 and 50 : 1. This suggested that the homologue exerted a “sparing effect” on proline in the mutant.The incorporation of L-[U-14C]proline and L-[3H]azetidine 2-carboxylic acid into hot trichloroacetic acid-insoluble material in the mutant was measured. Amino acid analysis of the insoluble material from cells incubated with radiolabeled proline alone revealed that proline was partially degraded and metabolized to other amino acids prior to incorporation into protein. The addition of unlabeled homologue to the incubation medium significantly reduced proline catabolism, suggesting that the homologue exerted a sparing effect on proline in this mutant. In medium containing unlabeled proline and radiolabeled L-azetidine 2-carboxylic acid, the homologuewas incorporated both intact and partially degraded prior to incorporation into protein. Alanine was the major L-azetidine 2-carboxylic acid catabolite.  相似文献   

9.
1. A prolyl-s-RNA synthetase (prolyl-transfer RNA synthetase) has been purified about 250-fold from seed of Phaseolus aureus (mung bean), a species not producing azetidine-2-carboxylic acid, and more than 10-fold from rhizome apices of Polygonatum multiflorum, a liliaceous species containing azetidine-2-carboxylic acid. The latter enzyme was unstable during ammonium sulphate fractionation. 2. The enzymes exhibited different substrate specificities towards the analogue. That from Phaseolus, when assayed by the ATP-PP(i) exchange, showed azetidine-2-carboxylic acid activation at about one-third the rate with proline. Both labelled imino acids gave rise to a labelled aminoacyl-s-RNA. The enzyme from Polygonatum, however, activated only proline. 3. The enzyme from Polygonatum also formed a labelled prolyl-s-RNA with Phaseolus s-RNA but at a lower rate than when the Phaseolus enzyme was used. No reaction occurred when the Phaseolus enzyme was coupled with Polygonatum s-RNA, and only a very slight one was observed when both enzyme and s-RNA came from Polygonatum. 4. Protein preparations from seeds of Pisum sativum, another species not producing azetidine-2-carboxylic acid, also activated the analogue in addition to proline, whereas those from rhizome and seeds of Convallaria, the species from which the analogue was originally isolated, failed to activate it. However, a liliaceous species not producing the analogue, Asparagus officinalis, activated it. 5. Of the other proline analogues investigated, only 3,4-dehydro-dl-proline and l-thiazolidine-4-carboxylic acid were active with the enzyme preparation from Phaseolus. 6. pH optima of 7.9 and 8.4 were established for the enzymes from Phaseolus and Polygonatum respectively. 7. The Phaseolus enzyme was specific for ATP and PP(i). Mn(2+) partially replaced the requirement for Mg(2+) as cofactor. Preincubation with p-chloromercuribenzoate at a concentration of 0.5mm or higher produced over 99% inhibition of the Phaseolus enzyme. One-half the enzymic activity was destroyed by preheating for 5min. at 62 degrees in tris-hydrochloric acid buffer, pH7.9. 8. All experimental evidence supports the hypothesis that azetidine-2-carboxylic acid and proline are activated by the same enzyme in Phaseolus preparations, whereas the analogue was inactive in all Polygonatum preparations. The possible nature of this different substrate behaviour is discussed.  相似文献   

10.
2(S),3′(S)-N-(3-Amino-3-carboxypropyl)azetidine-2-carboxylic acid and 2(S),3′(S),3″(S)-N-[N-(3-amino-3-carboxypropyl)-3-amino-3-carboxypropyl]azetidine-2-carboxylic acid have been isolated from seeds of Fagus silvatica L. (beechnuts). The structures have been established by PMR- and 13C-NMR-spectroscopy and by synthesis from l-azetidine-2-carboxylic acid. The second of the new amino acids is identical with nicotianamine. previously isolated from Nicotiana tabacum but assigned a different formula. The ring opening reactions of azetidine-2-carboxylic acid in neutral solution have been studied and the chemical and possibly biochemical precursor role of this amino acid for various amino acids including the two new ones described here, nicotianine [N-(3-amino-3-carboxypropyl)nicotinic acid] and methionine is discussed.  相似文献   

11.
Proline is an amino acid with a unique cyclic structure that facilitates the folding of many proteins, but also impedes the rate of peptide bond formation by the ribosome. As a ribosome substrate, proline reacts markedly slower when compared with other amino acids both as a donor and as an acceptor of the nascent peptide. Furthermore, synthesis of peptides with consecutive proline residues triggers ribosome stalling. Here, we report crystal structures of the eukaryotic ribosome bound to analogs of mono‐ and diprolyl‐tRNAs. These structures provide a high‐resolution insight into unique properties of proline as a ribosome substrate. They show that the cyclic structure of proline residue prevents proline positioning in the amino acid binding pocket and affects the nascent peptide chain position in the ribosomal peptide exit tunnel. These observations extend current knowledge of the protein synthesis mechanism. They also revise an old dogma that amino acids bind the ribosomal active site in a uniform way by showing that proline has a binding mode distinct from other amino acids.  相似文献   

12.
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide-protein and peptide-nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.  相似文献   

13.
Azetidine-2-carboxylic acid, the 4-membered ring noranalogue of proline, is regularly used in the study of proline metabolism as well as the study of protein conformation. We prepared D,L-[2,3-3H]azetidine-2-carboxylic acid with an optimized 10% yield from commercially available 4-amino-[2,3-3H]butyric acid. Purification was performed by fast-protein liquid chromatography. The biological activity was checked in both Arabidopsis thaliana and Escherichia coli. The obtained specific activity of 10 mCi/mmol was sufficient for most uptake and incorporation studies.  相似文献   

14.
Changes in the lengths and growth rates of isolated 2–4 mm pea root segments, cultured in sucrose media under aseptic conditions, were paralleled by changes in invertase development and in chloride and leucine uptakes. The amino acid analogues o-, m- and p-fluorophenylalanine, azetidine-2-carboxylic acid and ethionine inhibited growth with corresponding changes in invertase activity and in chloride and leucine uptakes. In contrast hydroxyproline, which under the conditions used may be regarded as an analogue of proline, enhanced both the growth rate and duration of growth but had little effect on the several parameters of protein synthesis which were measured. No amino acid tested affected changes in growth, invertase activity or the uptake of chloride and leucine, but they prevented the effects of the corresponding analogues. The results show that although extension growth is dependent on continuous protein synthesis, only specific proteins, probably in the cell wall, play a key role in this process.  相似文献   

15.
The SPOT technology can fulfill most requirements for highly parallel, multiple peptide synthesis of soluble peptides within the upper microgram range. Here, we report on an improved method using hydroxymethylphenoxyacetic acid (HMPA) for 19 amino acids and 4-(4-hydroxymethyl-3-methoxyphenoxy)-butyric acid (HMPB) for proline as acidic labile linkers in SPOT synthesis. Using this approach we could reduce side-chain reactions normally occurring during conventional alkaline peptide cleavage from cellulose membranes. All synthesis steps were adapted to fully-automated SPOT synthesis and therefore represent a time- and cost-saving procedure. Furthermore, the improved cleavage and washing steps resulted in peptides with authentic C-termini in a purity range of 60–95%. Our improved method is ideal for synthesizing many thousand different peptides subsequently used directly for different biological assays requiring authentic C-termini, such as CD8 T-cell epitope screening, vaccine immunization, or tumor imaging.  相似文献   

16.
In this article we present the synthesis and characterization of a new form of the membrane active peptide melittin: photomelittin. This peptide was created by substituting the proline residue in melittin for a synthetic azobenzene amino acid derivative. This azobenzene altered the membrane activity of the peptide while retaining much of the secondary structure. Furthermore, the peptide demonstrates added light-dependent activity in leakage assays. There is a 1.5-fold increase in activity when exposed to UV light as opposed to visible light. The peptides further exhibit light-dependent hemolytic activity against human red blood cells. This will enable future studies optimizing photomelittin and other azobenzene-containing membrane active peptides for uses in medicine, drug delivery, and other biotechnological applications.  相似文献   

17.
Amino acid-analogue-resistant mutants of the cyanobacterium Spirulina platensis were isolated using amino acid analogues -2-thienylalanine, p-fluorophenylalanine, ethionine and azetidine-2-carboxylic acid. The growth and other cellular contents in these mutants were less than in the parent. The internal free amino acid pool showed varying amounts. Maximal overproduction occurred of proline whereas overproduction of aspartic acid, alanine and lysine was much less.  相似文献   

18.
Synthetic cysteine-containing peptides were unidirectionally conjugated to albumin via disulfide bonds using the S-(3-nitro-2-pyridinesulfenyl) derivative of cysteine. This method employs the N-hydroxysuccinimide ester of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteine, a protected amino acid derivative used in peptide synthesis, as a heterobifunctional cross-linking agent. The disulfide bonds in the conjugates are formed by the reaction of free thiols with S-(3-nitro-2-pyridinesulfenyl) groups. Bovine albumin was conjugated in this manner to several synthetic peptides derived from human fibrin. Amino acid analysis of these conjugates demonstrated incorporations of from 6 to 11 peptide molecules per molecule of protein.  相似文献   

19.
Ma JF  Nomoto K 《Plant physiology》1994,105(2):607-610
The biosynthetic pathway of 2[prime]-deoxymugineic acid, a key phytosiderophore, was investigated by feeding 13C-, 2H-, and 15N-labeled methionine, the first precursor, to the roots of hydroponically cultured wheat (Triticum aestivum L. cv Minori). The incorporation of label from each methionine species was observed during their conversion to 2[prime]-deoxymugineic acid, using 2H-, 15N-, and 13C-nuclear magnetic resonance (NMR). L-[1-13C]Methionine (99% 13C) was efficiently incorporated, resulting in 13C enrichment of the three carboxyl groups of 2[prime]-deoxymugineic acid. Use of D,L-[15N]methionine (95% 15N) resulted in 15N enrichment of 2[prime]-deoxymugineic acid at the azetidine ring nitrogen and the secondary amino nitrogen. When D,L-[2,3,3,-2H3-S-methyl-2H3]methionine (98.2% 2H) was fed to the roots, 2H-NMR results indicated that only six deuterium atoms were incorporated, and that the deuterium atom from the C-2 position of each methionine was almost completely lost. [2,2,3,3-2H4]1-Aminocyclopropane-1-carboxylic acid (98% 2H) was not incorporated into 2[prime]-deoxymugineic acid. These data and our previous findings demonstrated that only the deuterium atom from the C-2 position of L-methionine was lost, and that other atoms were completely incorporated when three molecules of methionine were converted to 2[prime]-deoxymugineic acid. These observations are consistent with the conversion of L-methionine to azetidine-2-carboxylic acid, suggesting that L-methionine is first converted to azetidine-2-carboxylic acid during biosynthesis leading to 2[prime]-deoxymugineic acid. Based on these results, a hypothetical pathway from L-methionine to 2[prime]-deoxymugineic acid was postulated.  相似文献   

20.
Summary The growth of Thiobacillus neapolitanus strain C in liquid cultures was depressed by phenylalanine, p-fluorophenylalanine, cysteine, methionine, nor-leucine, azetidine-2-carboxylic acid, and chloramphenicol, but was little affected by glutamic acid, glycine, proline, azathymine, or oligomycin.Growing cultures assimilated 14C-labelled glycine, glutamic acid, phenylalanine, and tyrosine into protein. Tyrosine and phenylalamine were incorporated unchanged, but glutamate was used also for synthesis of arginine and proline. Glycine-14C contributed also to adenine and guanine synthesis. The extremely large amounts of phenylalanine incorporated into protein could indicate its toxicity to depend on its producing abnormal protein synthesis. Azetidine-2-carboxylic acid appeared to lower the amount of proline in the protein.Assimilation of glutamate and glycine by non-growing organisms was almost entirely dependent on energy from thiosulphate oxidation, thus suggesting a cause of obligate chemoautotrophy. Chloramphenicol specifically inhibited this thiosulphate-dependent incorporation of glutamate, glycine or CO2 into protein at concentrations which did not affect total CO2-fixation. Provided that energy is available from thiosulphate-oxidation this Thiobacillus is thus able to (a) activate exogenous amino acids; (b) incorporate them and CO2 into protein by a chloramphenicol sensitive mechanism; (c) synthesise proline and arginine from glutamate; or adenine and guanine from glycine. Its biosynthesis thus depends on mechanisms like those of heterotrophs but requires to be driven by a chemolithotrophic energy supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号