首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

2.
Dynamin is functionally coupled to insulin granule exocytosis   总被引:1,自引:0,他引:1  
The insulin granule integral membrane protein marker phogrin-green fluorescent protein was co-localized with insulin in Min6B1 beta-cell secretory granules but did not undergo plasma membrane translocation following glucose stimulation. Surprisingly, although expression of a dominant-interfering dynamin mutant (Dyn/K44A) inhibited transferrin receptor endocytosis, it had no effect on phogringreen fluorescent protein localization in the basal or secretagogue-stimulated state. By contrast, co-expression of Dyn/K44A with human growth hormone as an insulin secretory marker resulted in a marked inhibition of human growth hormone release by glucose, KCl, and a combination of multiple secretagogues. Moreover, serial pulse depolarization stimulated an increase in cell surface capacitance that was also blocked in cells expressing Dyn/K44A. Similarly, small interference RNA-mediated knockdown of dynamin resulted in marked inhibition of glucose-stimulated insulin secretion. Together, these data suggest the presence of a selective kiss and run mechanism of insulin release. Moreover, these data indicate a coupling between endocytosis and exocytosis in the regulation of beta-cell insulin secretion.  相似文献   

3.
IGFBP-1 is involved in glucohomeostasis, but the direct action of IGFBP-1 on the beta-cell remains unclear. Incubation of dispersed mouse beta-cells with IGFBP-1 for 30min inhibited insulin secretion stimulated by glucose, glucagon-like peptide 1 (GLP-1) or tolbutamide without changes in basal release of insulin and in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and NAD(P)H evoked by glucose. In contrast, IGFBP-1 augmented glucose-stimulated insulin secretion in intact islets, associated with a reduced somatostatin secretion. These results suggest a suppressive action of IGFBP-1 on insulin secretion in isolated beta-cells through a mechanism distal to energy generating steps and not involving regulation of [Ca(2+)](i). In contrast, IGFBP-1 amplifies glucose-stimulated insulin secretion in intact islets, possibly by suppressing somatostatin secretion. These direct modulatory influences of IGFBP-1 on insulin secretion may imply an important regulatory role of IGFBP-1 in vivo and in the pathogenesis of type 2 diabetes, in which loss of insulin release is an early pathogenetic event.  相似文献   

4.
The inhibitory effect of epinephrine on basal and tolbutamide-stimulated insulin release was studied in 5 patients with hyperinsulinemic hypoglycemia. Epinephrine inhibited both basal and tolbutamide-induced insulin release in patients with beta-cell adenoma and hyperplasia, but failed to inhibit insulin release in a patient with beta-cell carcinoma. The inhibition of basal insulin with epinephrine was maximum in patients with beta-cell hyperplasia. This differential inhibitory effect of epinephrine on insulin release may prove to be a useful screening test in the preoperative diagnosis of the nature of the lesion producing hyperinsulinemia.  相似文献   

5.
Environmental pollutants have recently emerged as potential risk factors for metabolic diseases, urging systematic investigation of pollutant effects on metabolic disease processes. To enable risk assessment of these so-called metabolic disruptors the use of stable, robust and well-defined cell based screening systems has recently been encouraged. Since beta-cell (dys)functionality is central in diabetes pathophysiology, the need to develop beta-cell based pollutant screening systems is evident. In this context, the present research evaluated the strengths and weaknesses of the INS-1 832/13 pancreatic beta-cell line as diabetogenic pollutant screening system with a focus on beta-cell function. After optimization of exposure conditions, positive (exendin-4, glibenclamide) and negative (diazoxide) control compounds for acute insulin secretion responses were tested and those with the most profound effects were selected to allow potency estimations and ranking of pollutants. This was followed by a first explorative screening of acute bisphenol A and bis(2-ethylhexyl)phthalate effects. The same approach was applied for chronic exposures, focusing primarily on evaluation of acknowledged chronic stimulators (diazoxide, T0901317, exendin-4) or inhibitors (glibenclamide) of insulin secretion responses to select the most responsive ones for use as control compounds in a chronic pollutant testing framework. Our results showed that INS-1 832/13 cells responded conform previous observations regarding acute effects of control compounds on insulin secretion, while bisphenol A and bis(2-ethylhexyl)phthalate had limited acute effects. Furthermore, chronic exposure to known beta-cell reactive compounds resulted in deviating insulin secretion and insulin content profiles compared to previous reports. In conclusion, this INS-1 subclone appears to lack certain characteristics needed to respond appropriately to acute pollutant exposure or long term exposure to known beta-cell reactive compounds and thus seems to be, in our setting, inadequate as a diabetogenic pollutant screening system.  相似文献   

6.
Although the alpha-adrenergic antagonist phentolamine potentiates glucose-stimulated insulin secretion of intact animals, it either does not alter, or it inhibits in vitro insulin secretion. This may be because in the higher concentration used in in vitro studies, phentolamine exerts a second pharmacological effect that counterbalances its primary effect of blocking monoamine action. We recently demonstrated that pancreatic islets contain substantial amounts of monoamine oxidase (MAO), and that MAO inhibitors such as iproniazid and tranylcypromine can alter insulin secretion. In the present study, we determined if other drugs that affect insulin secretion, alter the MAO activity of homogenates of rabbit pancreatic islets (collagenase technique) or liver. Phentolamine, phenoxybenzamine and propranolol (10 muM and 100 muM) inhibit islet and hepatic MAO. Haloperidol (10muM) inhibits hepatic but not islet MAO, while haloperidol (10muM) does not inhibit MAO in either tissue. Ethanol (270 to 2.7mM) inhibits islet MAO. Hepatic MAO is inhibited by high (270 to 180mM) but not by low (27 to 2.7mM) concentrations of ethanol. Collagenase digestion does not increase the sensitivity of islet and liver MAO to inhibition by phentolamine or ethanol. In the absence of added monoamines, phentolamine and phenoxybenzamine do not alter basal or glucose-stimulated insulin secretion from rabbit pancreas. Preincubation of rabbit pancreas with the serotonin precursor 5-hydroxytryptophan (5-HTP) increases the beta cell serotonin content and inhibits glucose-stimulated insulin secretion. Alpha adrenergic antagonists not only fail to block, but actually potentiate the serotonin inhibition of insulin secretion. We conclude that inhibition of islet MAO may cause an increase in islet monoamine content and these monoamines may alter in vitro insulin secretion. One mechanism through which adrenergic antagonists and ethanol modify in vitro insulin secretion may be by inhibiting pancreatic islet MAO.  相似文献   

7.
8.
Rosuvastatin is a member of the statin family. Like the other statins it is prescribed to lower cholesterol levels and thereby reduce the risk of cardiovascular events. Rosuvastatin lowers the cholesterol levels by inhibiting the key enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) in the cholesterol producing mevalonate pathway. It has been recognized that apart from their beneficial lipid lowering effects, statins also exhibit diabetogenic properties. The molecular mechanisms behind these remain unresolved. To investigate the effects of rosuvastatin on insulin secretion, we treated INS-1 832/13 cells with varying doses (20 nM to 20 μM) of rosuvastatin for 48 h. At concentrations of 2 μM and above basal insulin secretion was significantly increased. Using diazoxide we could determine that rosuvastatin did not increase basal insulin secretion by corrupting the KATP channels. Glucose-induced insulin secretion on the other hand seemed to be affected differently at different rosuvastatin concentrations. Rosuvastatin treatment (20 μM) for 24–48 h inhibited voltage-gated Ca2+ channels, which lead to reduced depolarization-induced exocytosis of insulin-containing granules. At lower concentrations of rosuvastatin (≤ 2 μM) the stimulus-secretion coupling pathway was intact downstream of the KATP channels as assessed by the patch clamp technique. However, a reduction in glucose-induced insulin secretion could be observed with rosuvastatin concentrations as low as 200 nM. The inhibitory effects of rosuvastatin on glucose-induced insulin secretion could be reversed with mevalonate, but not squalene, indicating that rosuvastatin affects insulin secretion through its effects on the mevalonate pathway, but not through the reduction of cholesterol biosynthesis. Taken together, these data suggest that rosuvastatin has the potential to increase basal insulin secretion and reduce glucose-induced insulin secretion. The latter is possibly an unavoidable side effect of rosuvastatin treatment as it occurs through the same mechanisms as the lipid-lowering effects of the drug.  相似文献   

9.
Islet cells undergo major changes in structure and function to meet the demand for increased insulin secretion during pregnancy, but the nature of the hormonal interactions and signaling events is incompletely understood. Here, we used the glucose-responsive MIN6 beta-cell line treated with prolactin (PRL), progesterone (PRG), and dexamethasone (DEX, a synthetic glucocorticoid), all elevated during late pregnancy, to study their effects on mechanisms of insulin secretion. DEX alone or combined with PRL and PRG inhibited insulin secretion in response to 16 mM glucose-stimulating concentrations. However, in the basal state (3 mM glucose), the insulin levels in response to DEX treatment were unchanged, and the three hormones together maintained higher insulin release. There were no changes of protein levels of GLUT2 or glucokinase (GK), but PRL or PRG treatment increased GK activity, whereas DEX had an inhibitory effect on GK activity. alpha-Ketoisocaproate (alpha-KIC)-stimulated insulin secretion was also reduced by DEX alone or combined with PRL and PRG, suggesting that DEX may inhibit distal steps in the insulin-exocytotic process. PRL treatment increased the concentration of intracellular cAMP in response to 16 mM glucose, suggesting a role for cAMP in potentiation of insulin secretion, whereas DEX alone or combined with PRL and PRG reduced cAMP levels by increasing phosphodiesterase (PDE) activity. These data provide evidence that PRL and to a lesser extent PRG, which increase in early pregnancy, enhance basal and glucose-stimulated insulin secretion in part by increasing GK activity and amplifying cAMP levels. Glucocorticoid, which increases throughout gestation, counteracts only glucose-stimulated insulin secretion under high glucose concentrations by dominantly inhibiting GK activity and increasing PDE activity to reduce cAMP levels. These adaptations in the beta-cell may play an important role in maintaining the basal hyperinsulinemia of pregnancy while limiting the capacity of PRL and PRG to promote glucose-stimulated insulin secretion during late gestation.  相似文献   

10.
Liu D  Ren M  Bing X  Stotts C  Deorah S  Love-Homan L  Dillon JS 《Steroids》2006,71(8):691-699
Both dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) affect glucose stimulated insulin secretion, though their cellular mechanisms of action are not well characterized. We tested the hypothesis that human physiological concentrations of DHEA alter insulin secretion by an action initiated at the plasma membrane of beta-cells. DHEA alone had no effect on intracellular calcium concentration ([Ca(2+)](i)) in a rat beta-cell line (INS-1). However, it caused an immediate and dose-dependent inhibition of carbachol-induced Ca(2+) release from intracellular stores, with a 25% inhibition at zero. One nanometer DHEA. DHEA also inhibited the Ca(2+) mobilizing effect of bombesin (29% decrease), but did not inhibit the influx of extracellular Ca(2+) evoked by glyburide (100 microM) or glucose (15 mM). The steroids (androstenedione, 17-alpha-hydroxypregnenolone, and DHEAS) had no inhibitory effect on carbachol-induced intracellular Ca(2+) release. The action of DHEA depended on a signal initiated at the plasma membrane, since membrane impermeant DHEA-BSA complexes also inhibited the carbachol effect on [Ca(2+)](i) (39% decrease). The inhibition of carbachol-induced Ca(2+) release by DHEA was blocked by pertussis toxin (PTX). DHEA also inhibited the carbachol induction of phosphoinositide generation, with a maximal inhibition at 0.1 nM DHEA. Furthermore, DHEA inhibited insulin secretion induced by carbachol in INS-1 cells by 25%, and in human pancreatic islets by 53%. Taken together, this is the first report showing that human physiological concentrations of DHEA decrease agonist-induced Ca(2+) release by a rapid, non-genomic mechanism in INS-1 cells. Furthermore, these data provide evidence consistent with the existence of a specific plasma membrane DHEA receptor, mediating this signal transduction pathway by pertussis toxin-sensitive G-proteins.  相似文献   

11.
Voltage-dependent (Kv) outward K(+) currents repolarize beta-cell action potentials during a glucose stimulus to limit Ca(2+) entry and insulin secretion. Dominant-negative "knockout" of Kv2 family channels enhances glucose-stimulated insulin secretion. Here we show that a putative Kv2.1 antagonist (C-1) stimulates insulin secretion from MIN6 insulinoma cells in a glucose- and dose-dependent manner while blocking voltage-dependent outward K(+) currents. C-1-blocked recombinant Kv2.1-mediated currents more specifically than currents mediated by Kv1, -3, and -4 family channels (Kv1.4, 3.1, 4.2). Additionally, C-1 had little effect on currents recorded from MIN6 cells expressing a dominant-negative Kv2.1 alpha-subunit. The insulinotropic effect of acute Kv2.1 inhibition resulted from enhanced membrane depolarization and augmented intracellular Ca(2+) responses to glucose. Immunohistochemical staining of mouse pancreas sections showed that expression of Kv2.1 correlated highly with insulin-containing beta-cells, consistent with the ability of C-1 to block voltage-dependent outward K(+) currents in isolated mouse beta-cells. Antagonism of Kv2.1 in an ex vivo perfused mouse pancreas model enhanced first- and second-phase insulin secretion, whereas glucagon secretion was unaffected. The present study demonstrates that Kv2.1 is an important component of beta-cell stimulus-secretion coupling, and a compound that enhances, but does not initiate, beta-cell electrical activity by acting on Kv2.1 would be a useful antidiabetic agent.  相似文献   

12.
Ethanol exerts profound effects on the endocrine and exocrine pancreas. Some effects of chronic alcohol consumption on insulin secretion in response to glucose load are similar to those of TRH gene disruption. TRH is present in insulin-producing B-cells of the islets of Langerhans; its role in this location is still not fully explored. To examine the possible effect of long-term in vivo ethanol treatment on pancreatic TRH we compared three groups of rats: a 10% (wt:vol) ethanol-drinking group (E), absolute controls (AC) and pair-fed (PF) group with solid food intake corresponding to that of E. The fluidity of pancreatic membranes was not affected by chronic in vivo exposure of rats to ethanol, but was significantly decreased in PF group. Four-week treatment resulted in significantly higher TRH content in isolated islets of the E group and increased basal and 80 mM isotonic ethanol-induced secretion compared to AC and PF. Plasma levels of insulin, C-peptide, IGF-I, and glycemia were, however, not affected by ethanol treatment. Cell swelling, which can be induced by the presence of permeants (e.g. ethanol) in an isotonic extracellular medium, is a strong stimulus for secretion in various types of cells. In the present study, isosmotic ethanol (40, 80, and 160 mM) induced dose-dependent release of TRH and insulin from adult rat pancreatic islets in vitro. The same concentrations were not effective when applied in a hyperosmotic medium (addition of ethanol directly to the medium), thus indicating the participation of cell swelling in the ethanol-induced secretion. In conclusion, chronic ethanol treatment significantly affected pancreatic TRH and this effect might be mediated by cell swelling. The role of these changes in the profound effect of ethanol on the endocrine and exocrine pancreas remains to be established.  相似文献   

13.
The effect of tetracaine and lidocaine on insulin secretion and glucose oxidation by islets of ob/ob-mice was measured. Tetracaine, at a concentration of 1 microM to 0.1 mM, did not markedly influence the basal (3 mM glucose) insulin secretion, whereas 0.5-3.5 mM induced a marked increase. At 7 mM glucose, there was a dose-dependent increase with 0.1-2.5 mM tetracaine. Insulin release induced by 20 mM glucose was potentiated by 0.1 mM and 0.5 mM tetracaine, but this effect disappeared at 1 mM tetracaine. The stimulatory effect of 0.5-1 mM tetracaine on basal insulin release was blocked by the secretory inhibitors, adrenaline (1 microM), clonidine (1 microM) and by Ca2+-deficiency, but the stimulation by 3.5 mM tetracaine was not reduced by 1 microM clonidine or Ca2+ deficiency. Atropine (10 microM) did not affect the stimulation by 0.5 mM tetracaine at 3 mM glucose or by 0.25 mM tetracaine at 20 mM glucose. Tetracaine, at 0.1 mM, potentiated the secretory stimulation of 20 mM L-leucine, 20 mM D-mannose, or 1 microM glibenclamide. Mannoheptulose, 10 mM, abolished the combined effects of 0.1 mM tetracaine and 10 mM glucose. Lidocaine, 1-5 mM, stimulated basal insulin release, but 1 microM-1 mM of the drug did not affect glucose-induced (20 mM glucose) insulin release and 5 mM lidocaine inhibited glucose stimulation. The oxidation of 10 mM D-[U-14C]glucose was slightly enhanced by 0.1 and 1 mM tetracaine. The results indicate that tetracaine and lidocaine, at certain concentrations, can induce insulin release and that tetracaine potentiates secretion induced by other secretagogues. It is concluded that these effects may be associated with beta-cell functions related to the adrenergic receptors but probably not to cholinergic receptors.  相似文献   

14.
To understand the role of the insulin receptor pathway in beta-cell function, we have generated stable beta-cells (betaIRS1-A) that overexpress by 2-fold the insulin receptor substrate-1 (IRS-1) and compared them to vector-expressing controls. IRS-1 overexpression dramatically increased basal cytosolic Ca2+ levels from 81 to 278 nM, but it did not affect Ca2+ response to glucose. Overexpression of the insulin receptor also caused an increase in cytosolic Ca2+. Increased cytosolic Ca2+ was due to inhibition of Ca2+ uptake by the endoplasmic reticulum, because endoplasmic reticulum Ca2+ uptake and content were reduced in betaIRS1-A cells. Fractional insulin secretion was significantly increased 2-fold, and there was a decrease in betaIRS1-A insulin content and insulin biosynthesis. Steady-state insulin mRNA levels and glucose-stimulated ATP were unchanged. High IRS-1 levels also reduced beta-cell proliferation. These data demonstrate a direct link between the insulin receptor signaling pathway and the Ca2+-dependent pathways regulating insulin secretion of beta-cells. We postulate that during regulated insulin secretion, released insulin binds the beta-cell insulin receptor and activates IRS-1, thus further increasing cytosolic Ca2+ by reducing Ca2+ uptake. We suggest the existence of a novel pathway of autocrine regulation of intracellular Ca2+ homeostasis and insulin secretion in the beta-cell of the endocrine pancreas.  相似文献   

15.
Abstract: Acetylcholine and other muscarinic agonists stimulate the proliferation of rat cortical astrocytes and 132 1N1 human astrocytoma cells by activating muscarinic m3 cholinergic receptors. Ethanol was a potent inhibitor of carbachol-stimulated proliferation, measured by [3H]thymidine incorporation, with an IC50 of 10 m M . On the other hand, basal and serum-stimulated proliferation of astrocytes and astrocytoma cells was inhibited by ethanol with lower potency (IC50 = 200–250 m M ). Concentration-response experiments with carbachol, in the presence of 10 m M ethanol, suggested that inhibition of proliferation by the alcohol was of the noncompetitive type. Experiments with acetaldehyde and with the alcohol dehydrogenase inhibitor 4-methylpyrazole suggested that the inhibitory effect of alcohol was due to ethanol itself and not to its metabolite acetaldehyde. Proliferation of astrocytoma cells induced by carbachol and the inhibitory effects of ethanol were also confirmed by flow cytometry using the 5-bromodeoxyuridine-Hoechst 33258 method. Ethanol (10 m M ) had no effect on proliferation induced by 50 µg/ml insulin and 100 ng/ml platelet-derived growth factor BB; on the other hand, the mitogenic effect of 1 m M histamine, 100 U/ml interleukin-1, and 100 ng/ml 12- O -tetradecanoylphorbol 13-acetate were inhibited by ∼50%. These results indicate that proliferation of glial cells induced by muscarinic agonists is especially sensitive to the inhibitory effect of ethanol. This action of ethanol may be relevant to its developmental neurotoxicity, particularly microencephaly, which is one of the common features of the fetal alcohol syndrome.  相似文献   

16.
The prevalence of type 2 diabetes has been rapidly increasing in conjunction with the westernization of diet patterns in Asia. We determined whether the antecedent consumption of traditional Asian-style diets (ADs) deteriorates insulin action, insulin secretion and pancreatic beta-cell mass after subsequent imposition of the diabetogenic challenge of Western-style diets (WDs) in weaning male Sprague-Dawley rats. Rats were provided AD (a low-fat and plant protein diet), WD (a high-fat and animal protein diet) or a control diet (CD) (a low-fat and animal protein diet) for 12 weeks. After 12 weeks, the groups were divided into two subsets; one set of the groups continued to consume their previous diets of WD, AD and CD for another 12 weeks, and the second set was divided into three groups represented by a switch in their designated diets from WD to AD, AD to WD and CD to WD. Whole-body glucose disposal rates and GLUT4 contents in soleus muscles were lower in WD regardless of the antecedent protein sources. The first-phase insulin secretion was higher in the CD group than in the other groups, whereas the second phase was lowered with AD consumption as antecedent and/or present diets. Asian-style diet and AD-WD intake did not compensate for insulin resistance due to the failure of beta-cell expansion via decreased proliferation. These findings suggest that the antecedent consumption of AD possibly accelerates and augments the development of glucose dysregulation via decreased insulin secretion capacity and pancreatic beta-cell mass when the diets switch to WD.  相似文献   

17.
In studying the regulation of insulin secretion by phorbol esters, we examined their effects on the cytosolic free Ca2+ concentration ([Ca2+]i), using the Ca2+ indicator fura-2 in the rat insulin-secreting beta-cell line RINm5F. [Ca2+]i was measured in parallel with the rate of insulin release. 50 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), which may act via protein kinase C, stimulated insulin release and caused an increase in [Ca2+]i. Ca2+-free conditions eliminated the increase in [Ca2+]i and resulted in a reduced stimulation of insulin release by TPA. The Ca2+ channel blocker nitrendipine (300 nM) inhibited both the increase in [Ca2+]i and the increased rate of insulin secretion. Another phorbol ester, 4 beta-phorbol 12,13-didecanoate, which activates protein kinase C, also induced an increase in [Ca2+]i and in the rate of insulin release, while 4 alpha-phorbol 12,13-didecanoate, which fails to stimulate protein kinase C, was without effect. Further studies with bis-oxonol as an indicator of membrane potential showed that TPA depolarized the beta-cell plasma membrane. From these results, it is concluded that TPA depolarizes the plasma membrane, induces the opening of Ca2+ channels in the RINm5F beta-cell plasma membrane, increases [Ca2+]i, and results in insulin secretion. The action of TPA was next compared with that of a depolarizing concentration of KC1 (25 mM), which stimulates insulin secretion simply by opening Ca2+ channels. TPA consistently elicited less depolarization, a smaller rise of [Ca2+]i, but a greater release of insulin than KC1. Therefore an additional action of TPA is suggested, which potentiates the action of the elevated [Ca2+]i on insulin secretion.  相似文献   

18.
Brown JE  Onyango DJ  Dunmore SJ 《FEBS letters》2007,581(17):3273-3276
The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.  相似文献   

19.
Islet function is dependent on cells within the islet interacting with each other. E-cadherin (ECAD) mediates Ca(2+)-dependent homophilic cell adhesion between b-cells within islets and has been identified as a tumour suppressor. We generated clones of the MIN6 beta-cell line that stably over- (S) and under-express (alphaS) ECAD. Modified expression of ECAD was confirmed by quantitative RT-PCR, immunoblotting and immunocytochemistry. Preproinsulin mRNA, insulin content and basal rates of insulin secretion were higher in S cells compared to aS and control (V) cells. However, stimulated insulin secretory responses were unaffected by ECAD expression levels. ECAD expression did affect proliferation, with enhanced ECAD expression being associated with reduced proliferation and vice versa. Formation of islet-like structures was associated with a significant reduction in proliferation of V and S cells but not alphaS cells. These data suggest that ECAD expression levels do not modulate insulin secretory function but are consistent with a role for ECAD in the regulation of beta-cell proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号