首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence and absorbance of merocyanine 540 in suspensions of skeletal muscle microsomes is altered by the binding of Ca2+ and other cations to the membrane. The order of effectiveness of various cations in causing this effect is La greater than Ca congruent to Mg greater than K. Competition between Ca2+, Mg2+, and K+ suggests the involvement of low affinity, relatively nonspecific cation binding sites in the process. Changes in the fluorescence and absorbance of merocyanine were also observed during ATP-dependent accumulation of calcium into sarcoplasmic reticulum. These changes are satisfactorily explained by the binding of accumulated calcium to binding sites on the interior of sarcoplasmic reticulum membrane. The small absorbance response of the oxonol dye bis[1,3-dibutylbarbituric acid-(5)]trimethinoxonol to Ca2+ and ATP is qualitatively similar to that of merocyanine 540 and can be readily explained by the same mechanism. We have found no clear evidence that any of the observed dye responses are due to changes in the diffusion potential across the sarcoplasmic reticulum membrane generated by an electrogenic transport mechanism. The possibility is considered that merocyanine and oxonol dyes respond to changes in electrostatic surface potential caused by the binding of cations.  相似文献   

2.
The relationship between Ca2+ fluxes and the ion diffusion potential was analyzed on sarcoplasmic reticulum membranes using oxacarbocyanine dyes as optical probes for membrane potential. 3.3'-Diethyloxodicarbocyanine responds to ATP-induced Ca2+ uptake by isolated sarcoplasmic reticulum vesicles with a decrease in absorbance at 600 nm. The optical change is reversed during Ca2+ release from sarcoplasmic reticulum induced by KCl or by ADP and inorganic phosphate. The absorbance changes are largely attributable to the binding of accumulated Ca2+ to the membrane. There is no indication that sustained changes in membrane diffusion potential would accompany pump-mediated Ca2+ fluxes. A large change in the absorbance of 3,3'-diethyloxodicarbocyanine was observed on sarcoplasmic reticulum vesicles under the influence of membrane potential generated by valinomycin in the presence of a K+ gradient or by ionophore A23187 in the presence of a Ca2+ gradient. The maximum of the potential-dependent absorbance change is at 575--580 nm. The potentials generated by valinomycin or ionophore A23187 are short-lived due to the high permeability of sarcoplasmic reticulum membranes for cations and anions. There is no correlation between the direction and magnitude of the artifically imposed membrane potential and the rate of Ca2+ uptake or release by isolated sarcoplasmic reticulum vesicles.  相似文献   

3.
S Wakabayashi  M Shigekawa 《Biochemistry》1990,29(31):7309-7318
The mechanism for activation of sarcoplasmic reticulum ATPase by Ca2+ was investigated in 2 mM MgCl2 and 0.1 M KCl at pH 6.5 and 11 degrees C by using enzyme preparations in which a specific amino acid residue (Cys-344) was labeled with 4-nitrobenzo-2-oxa-1,3-diazole (NBD) [Wakabayashi, S., Imagawa, T., & Shigekawa, M. (1990) J. Biochem. (Tokyo) 107, 563-571]. We compared the kinetics of binding and dissociation of Ca2+ from the enzyme with those of the accompanying NBD fluorescence changes. The fluorescence rise following addition of Ca2+ proceeded monoexponentially. At 2-100 microM Ca2+ and in the absence of nucleotides, the Ca2(+)-induced fluorescence rise and Ca2+ binding to the enzyme proceeded at similar rates, which were almost independent of the Ca2+ concentration. In contrast, the fluorescence decrease induced by Ca2+ removal was slower than the Ca2+ dissociation, and both of these processes were inhibited markedly by increasing medium Ca2+. ATP by binding at 1 mol/mol of the phosphorylation site markedly accelerated both the Ca2(+)-induced fluorescence rise and Ca2+ binding, ADP and AMPPNP but not GTP also being effective. In contrast, ADP minimally affected the NBD fluorescence decrease and the Ca2+ dissociation. These data are consistent with a reaction model in which binding of Ca2+ occurs after the conformational transition of the free enzyme from a state (E2) having low affinity for Ca2+ to one (E1) having high affinity for Ca2+ and in which ATP bound at the catalytic site of E2, whose affinity for ATP is about 30-fold less than that of E1, accelerates this conformational transition.  相似文献   

4.
The sarcoplasmic reticulum Ca2(+)-ATPase of skeletal muscle has two high affinity calcium sites, one of fast access ("f" site) and one of slow access ("s" site). In addition to Ca2+ these sites are able to interact with other cations like Mg2+ or K+. We have studied with a stopped-flow method the modifications produced by Mg2+ and K+ on the kinetics of the intrinsic fluorescence changes produced by Ca2+ binding to and dissociation from the Ca2(+)-ATPase of sarcoplasmic reticulum. The presence of Mg2+ ions (K1/2 = 0.5 mM at pH 7.2) leads to the appearance of a rapid phase in the Ca2+ binding, which represents half of the signal amplitude at optimal Mg2+. The presence of K+ greatly accelerates both the Ca2+ binding and the Ca2+ dissociation reactions, giving, respectively, a 4- and 8-fold increase of the rate constant of the induced fluorescence change. K+ ions also increase the rate of the 45Ca/40Ca exchange reaction at the s site measured by rapid filtration. These results lead us to build up a model for the Ca2(+)-binding mechanism of the sarcoplasmic reticulum Ca2(+)-ATPase in which Mg2+ and K+ participate at particular steps of the reaction. Moreover, we propose that, in the absence of Ca2+, this enzyme may be the pathway for monovalent ion fluxes across the sarcoplasmic reticulum membrane.  相似文献   

5.
We have developed a rapid filtration technique for the measurement of Ca2+ release from isolated sarcoplasmic reticulum vesicles. Using this technique, we have studied the Ca2+-induced Ca2+ release of sarcoplasmic reticulum vesicles from rabbit skeletal muscle passively loaded with 5 mM Ca2+. The effect of known effectors (adenine nucleotides and caffeine) and inhibitors (Mg2+ and ruthenium red) of this release were investigated. In a medium composed of 100 mM KCl buffered at pH 6.8 with 20 mM K/3-(N-morpholino)propanesulfonic acid the Ca2+ release rate was maximal (500 nmol of Ca2+ released.(mg of protein)-1.s-1) at 1 micron external Ca2+ and 5 mM ATP. We also observed a rapid Ca2+ release induced by micromolar Ag+ in the presence of ATP (at 1 nM Ca2+). The Ag+-induced Ca2+ release was totally inhibited by 5 micron ruthenium red. We have also investigated the effect of monovalent ions on the Ca2+ release elicited by Ca2+ or Ag+. We show that the Ca2+ release rate: 1) was dependent upon the presence of K+ or Na+ in the release medium and 2) was influenced by a K+ gradient created across the sarcoplasmic reticulum membrane. These results directly support the idea of the involvement of an influx of K+ (through K+ channels) during the Ca2+ release and allow to reconsider a possible influence of the membrane potential of the sarcoplasmic reticulum on the Ca2+ release.  相似文献   

6.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

7.
The fluorescent thiol reagent N-(1-anilinonaphthyl-4)maleimide (ANM) reacts covalently with the Ca2+ ATPase moiety of fragmented sarcoplasmic reticulum in two phases as determined by the increase of fluorescence intensity and optical density at 350 nm. In the rapid phase, 5.5 nmol of ANM reacts with 1 mg of fragmented sarcoplasmic reticulum protein. Assuming that 55% of the total membrane protein is the Ca2+ ATPase, this is equivalent to 1 mol of SH/10(5) g of ATPase, designated as SH1-ANM. ANM reacts with the second SH (SH2-ANM) at a much slower rate. Reaction of ANM with both SH1-ANM and SH2-ANM produces no inhibition of phosphoenzyme (EP) formation. Upon addition of Mg . ATP in the micromolar range, at [Ca2+] = 1 microM there is an increase in the fluorescence intensity of ANM attached to SH2-ANM, while the ANM attached to SH1-ANM does not respond to Mg . ATP. Under conditions in which there is no EP formation, there is no fluorescence change. Furthermore, the enhancement of ANM fluorescence produced by Mg . ATP is reversed by ADP as it reacts with EP to form ATP. Thus, it appears that the Mg . ATP-induced fluorescence increase reflects changes of enzyme conformation produced by EP formation.  相似文献   

8.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

9.
Membrane phosphorylation and nucleoside triphosphatase activity of sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle were studied using ATP and ITP as substrates. The Ca2+ concentration was varied over a range large enough to saturate either the high affinity Ca2+-binding site or both high and low affinity binding sites. In intact vesicles, which are able to accumulate Ca2+, the steady state level of enzyme phosphorylated by either ATP or ITP is already high in 0.02 mM Ca2+ and does not vary as the Ca2+ concentration is increased to 10 mM. Essentially the same pattern of membrane phosphorylation by ATP is observed when leaky vesicles, which are unable to accumulate Ca2+, are used. However, for leaky vesicles, when ITP is used as substrate, the phosphoenzyme level increases 3- to 4-fold when the Ca2+ concentration is raised from 0.02 to 20 mM. When Mg2+ is omitted from the assay medum, the degree of membrane phosphorylation by ATP varies with Ca2+ in the same way as when ITP is used in the presence of Mg2+. Membrane phosphorylation of leaky vesicles by either ATP or ITP is observed in the absence of added Mg2+. When these vesicles are incubated in media containing ITP and 0.1 mM Ca2+, addition of Mg2+ up to 10 mM simultaneously decreases the steady state level of phosphoenzyme and increases the rate of ITP hydrolysis. When ATP is used, the addition of 10 mM Mg2+ increases both the steady state level of phosphoenzyme and the rate of ATP hydrolysis. When the Ca2+ concentration is raised to 10 or 20 mM, the degree of membrane phosphorylation by either ATP or ITP is maximal even in the absence of added Mg2+ and does not vary with the addition of 10 mM Mg2+. In these conditions the ATPase and ITPase activities are activated by Mg2+, although not to the level observed in 0.1 mM Ca2+. An excess of Mg2+ inhibits both the rate of hydrolysis and membrane phosphorylation by either ATP or ITP.  相似文献   

10.
The changes in fluorescence of 1-anilino-8-naphthalenesulfonate (ANS-) have been used to determine binding of ligands to the (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles, isolated from rabbit skeletal muscle. ANS- binds to sarcoplasmic reticulum membranes with an apparent Kd of 3.8 X 10(-5) M. The binding of ANS- had no effect on Ca2+ transport or Ca2+-dependent ATPase activity. EGTA, by binding endogenous Ca2+, increased the fluorescence intensity of bound ANS- by 10-12%. Subsequent addition of ATP, ADP, or Ca2+, in the presence or absence of Mg2+, reversed this change of fluorescence. The binding parameters, as determined by these decreases in fluorescence intensity, were as follows: for ATP, Kd = 1.0 X 10(-5) M, nH = 0.80; for ADP, Kd = 1.2 X 10(-5) M, nH = 0.89; and for Ca2+, Kd = 3.4 X 10(-7) M, nH = 1.8. The binding parameters for ITP and for the nonhydrolyzable analogue, adenyl-5'-yl-beta, gamma-methylene)diphosphate, were similar to those of ATP, but GDP, IDP, CDP, AMP, and cAMP had lower apparent affinities. Millimolar concentrations of pyrophosphate also decreased the fluorescence of bound ANS-, whereas orthophosphate caused a small (2-3%) increase in fluorescence in Ca2+-free media. Vanadate, in the presence of EGTA, decreased the fluorescence of bound ANS-with half-maximal effect at 4 X 10(-5) M. The changes of fluorescence intensity of bound ANS- appear to reflect conformational changes of the (Ca2+, Mg2+)-ATPase, consequent to ligand binding, with the low and high fluorescence intensity species corresponding to the E1 and E2 conformations, respectively. These appear to reflect similar conformational states of the (Ca2+, Mg2+)-ATPase to those reported by changes in intrinsic tryptophan fluorescence (DuPont, Y. (1976) Biochem, Biophys. Res. Commun. 71, 544-550).  相似文献   

11.
The irreversible effects of pressure (1-2000 atm) upon the enzymatic activity and structure of the Ca2+-ATPase of sarcoplasmic reticulum were investigated. Sarcoplasmic reticulum vesicles suspended in a medium of 0.1 M KCl, 10 mM imidazole, pH 7.0, 5 mM MgCl2, and 0.5 mM EGTA irreversibly lose their Ca2+ transport and Ca2+-stimulated ATPase activities on exposure to pressures of 800-2000 atmospheres. The pressure-induced inactivation of Ca2+-ATPase is accompanied by inhibition of the formation of phosphorylated enzyme intermediate, an increase in the passive Ca2+ permeability of the membrane, and structural changes in the Ca2+-ATPase as shown by disruption of Ca2+-ATPase membrane crystals, increased susceptibility to tryptic digestion, unmasking of SH groups, and loss of the conformational responses to Ca2+ and vanadate. The sensitivity to pressure is influenced by enzyme conformation. Ca2+ or vanadate + EGTA protect the Ca2+-ATPase against pressure-induced inactivation, implying a greater stability of the enzyme in the E1 and E2 states than in the conformational equilibrium that prevails at low [Ca2+] in the absence of vanadate. Protection against pressure inactivation was also observed in the presence of sucrose, glycerol, ethylene glycol and 1 M KCl, suggesting that water density modifying groups significantly affect the stability of Ca2+-ATPase under pressure.  相似文献   

12.
Rate constants for most of the steps of the reaction cycle of the sarcoplasmic reticulum calcium-ATPase are similar or identical with Ca2+ or Sr2+ as the transported ions in spite of the large differences in the size and affinity of Ca2+ and Sr2+ (5 mM MgCl2, 100 mM KCl, pH 7.0, 25 degrees C). Phosphorylation of cE.Sr2 and cE.Ca2 by ATP occurs with kp = 220-235 s-1, whereas phosphorylation of E.ATP+Ca2+ or Sr2+ is consistent with kb = 50-70 s-1. Hydrolysis of E approximately P.Sr2 and E approximately P.Ca2 occurs with kt = 20 s-1, and the addition of 7 mM ADP to E approximately P.Sr2 or to E approximately P.Ca2 gives a burst of approximately 43% dephosphorylation, followed by dephosphorylation with k = 46 s-1. However, one Sr2+ ion dissociates from cE.Sr2 and from cE.ATP.Sr2 with k congruent to 120 s-1, whereas one Ca2+ ion dissociates from cE.Ca2 with k = 38 s-1 and from cE.ATP.Ca2 with k = 80 s-1.  相似文献   

13.
Cys674 of the sarcoplasmic reticulum Ca2+-ATPase was selectively labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine without a loss of the catalytic activity, and the steady-state fluorescence anisotropy of this label and its total fluorescence intensity were followed throughout the catalytic cycle. At 25 degrees C, the anisotropy and the total fluorescence intensity increased by 2.1 and 9.4%, respectively, upon Ca2+ binding to the high affinity sites. Upon subsequent ATP binding to the catalytic site, the anisotropy and the total fluorescence intensity decreased by 6.8 and 23.9%, respectively. These drops likely occurred in the enzyme.ATP complex. The extents of changes upon additions of Ca2+ and ATP in the anisotropy, but not in the total fluorescence intensity, were greatly reduced by lowering the temperature. Slight drops in the anisotropy and the total fluorescence intensity occurred upon conversion of phosphoenzyme (EP) from the ADP-sensitive form to the ADP-insensitive form. The anisotropy and the total fluorescence intensity returned to the initial level when EP was hydrolyzed. Mg2+-dependent Pi-induced drops in the anisotropy and the total fluorescence intensity occurred coincidently with EP formation from Pi. These demonstrate that the ATP-induced drops in the anisotropy and the total fluorescence intensity are predominant throughout the catalytic cycle. Most probably, the changes in the anisotropy are due to changes in the rotational diffusion of the label. These findings indicate that ATP binding to the catalytic site induces a relaxed conformation in the microenvironment of the label bound to Cys674.  相似文献   

14.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

15.
The effects of sarcoplasmic reticulum lumenal (trans) Ca2+ on cytosolic (cis) ATP-activated rabbit skeletal muscle Ca2+ release channels (ryanodine receptors) were examined using the planar lipid bilayer method. Single channels were recorded in symmetric 0.25 M KCl media with K+ as the major current carrier. With nanomolar [Ca2+] in both bilayer chambers, the addition of 2 mM cytosolic ATP greatly increased the number of short channel openings. As lumenal [Ca2+] was increased from < 0.1 microM to approximately 250 microM, increasing channel activities and events with long open time constants were seen at negative holding potentials. Channel activity remained low at positive holding potentials. Further increase in lumenal [Ca2+] to 1, 5, and 10 mM resulted in a decrease in channel activities at negative holding potentials and increased activities at positive holding potentials. A voltage-dependent activation by 50 microM lumenal Ca2+ was also observed when the channel was minimally activated by < 1 microM cytosolic Ca2+ in the absence of ATP. With microM cytosolic Ca2+ in the presence or absence of 2 mM ATP, single-channel activities showed no or only a weak voltage dependence. Other divalent cations (Mg2+, Ba2+) could not replace lumenal Ca2+. On the contrary, cytosolic ATP-activated channel activities were decreased as lumenal Ca2+ fluxes were reduced by the addition of 1-5 mM BaCl2 or MgCl2 to the lumenal side, which contained 50 microM Ca2+. An increase in [KCl] from 0.25 M to 1 M also reduced single-channel activities. Addition of the "fast" Ca2+ buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cls chamber increased cytosolic ATP-, lumenal Ca(2+)-activated channel activities to a nearly maximum level. These results suggested that lumenal Ca2+ flowing through the skeletal muscle Ca2+ release channel may regulate channel activity by having access to cytosolic Ca2+ activation and Ca2+ inactivation sites that are located in "BAPTA-inaccessible" and "BAPTA-accessible" spaces, respectively.  相似文献   

16.
KCl or LiCl, when added in 100 mM concentrations to cardiac sarcoplasmic reticulum incubated at 17 degrees C with 5 micron [gamma-32P]ATP, 1 mM MgCl2, and 9.1 micron M Ca2+, increased the apparent phosphorylation rate constant from 14.5 s-1 to 23.8 s-1 (100 mM LiCl) or to 44.1 s-1 (100 mM KCl). These same monovalent cations also increased the apparent rate constant for the hydrolysis of the phosphorylated sarcoplasmic reticulum from 0.51 s-1 to 1.12 s-1 (100 mM LiCl) or to 1.71 s-1 (100 mM KCl). Although there was a small burst in Pi production, rate constant of 0.97 s-1, when 100 mM KCl was added, the burst when LiCl or no monovalent cation was added was either nonexistent or so small as to make its detection unreliable. KCl thus appears to induce an intermediate which is either nonexistent when omitted or in such low concentration as not to be readily detected.  相似文献   

17.
The mean orientations of the transition dipole moments associated with vibrational modes of the proteins and phospholipids of sarcoplasmic reticulum were determined on dry and hydrated membrane multilayers deposited on germanium or zinc selenide crystals, using polarized infrared attenuated total reflectance spectroscopy (P-IR-ATR). For preservation of the enzymatic activity of the Ca(2+)-ATPase the films were prepared from solutions containing 0.05 M KCl, 5 mM imidazole (pH 7.4), 0.5 mM MgCl2, 1-10 mM trehalose and dithiothreitol. The anisotropy was highest in dry films containing congruent to 7.5 micrograms protein/cm2, and decreased with increasing membrane thickness or hydration. The dichroic ratio of the CH2 vibrations (2923 cm-1) of extracted sarcoplasmic reticulum phospholipids on Ge plate was 1.56, compared with a dichroic ratio of 1.68 obtained on dry films of whole sarcoplasmic reticulum. The dichroic ratios of the amide I band (1650 cm-1) of the Ca(2+)-ATPase in the Ca2-E1 state and in the EGTA and vanadate stabilized E2-V state were nearly identical (1.60 vs. 1.62). The dichroism of the amide I, amide II and lipid CH2 vibrations was not affected by changes in the concentration of KCl (25-100 mM) or Ca2+ (approximately equal to 10(-8)-10(-4) M) and by the addition of vanadate (1 mM) or Pi (5 mM) in a calcium-free medium containing 0.5 mM EGTA. The dichroic ratio of the C-C (1033 cm-1) or CO stretching band (1046 cm-1) of trehalose incorporated into SR films was 1.2 on Ge plate; this corresponds to a mean angle of approximately 70 degrees between the plane of the trehalose ring and the normal of the film plane, suggesting that the trehalose molecules are surprisingly well oriented in the polar headgroup region of the phospholipids. The orientation of the trehalose was not affected by the presence of Ca(2+)-ATPase.  相似文献   

18.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

19.
Urea, in nondenaturing concentrations, inhibited Ca2+ uptake by sarcoplasmic reticulum vesicles with no concomitant effect on ATP hydrolysis. This inhibition was antagonized by 5 mM oxalate and 20 mM orthophosphate. At concentrations of 0.2 to 1.0 M, urea induced an increase in the Ca2+ efflux from preloaded vesicles diluted in a medium at pH 7.0 containing 2 mM ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid, 0.1 mM orthophosphate, and 0.1 mM MgCl2. The urea-induced efflux was arrested by ligands of the (Ca(2+)-Mg2+) ATPase, namely, K+, Mg2+, Ca2+, and ADP, and by ruthenium red and the polyamines spermine, spermidine, and putrescine. In the case of polyamines a dissociation between the effect on the efflux and the net Ca2+ uptake was observed, as only the efflux could be blocked by the drugs. Glycine betaine, trimethylamine-N-oxide, and sucrose antagonized the effects of urea on both the net Ca2+ uptake and the rate of Ca2+ efflux.  相似文献   

20.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号