首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The activity of the amiloride-sensitive epithelial sodium channel (ENaC) is modulated by F-actin. However, it is unknown if there is a direct interaction between alpha-ENaC and actin. We have investigated the hypothesis that the actin cytoskeleton directly binds to the carboxyl terminus of alpha-ENaC using a combination of confocal microscopy, co-immunoprecipitation, and protein binding studies. Confocal microscopy of Madin-Darby canine kidney cell monolayers stably transfected with wild type, rat isoforms of alpha-, beta-, and gamma-ENaC revealed co-localization of alpha-ENaC with the cortical F-actin cytoskeleton both at the apical membrane and within the subapical cytoplasm. F-actin was found to co-immunoprecipitate with alpha-ENaC from whole cell lysates of this cell line. Gel overlay assays demonstrated that F-actin specifically binds to the carboxyl terminus of alpha-ENaC. A direct interaction between F-actin and the COOH terminus of alpha-ENaC was further corroborated by F-actin co-sedimentation studies. This is the first study to report a direct and specific biochemical interaction between F-actin and ENaC.  相似文献   

3.
Purple membrane samples have been prepared by trypsin digestion to have either 10 or 21 residues removed from the carboxyl terminus of the proteins. Electron diffraction of single membranes and x-ray diffraction of unoriented membrane pellets have been carried out on both these specimens and on native purple membranes. the main conclusion from this work is that the carboxyl terminus is almost entirely disordered, being free to take up many positions, and that its removal does not affect the packing in the crystal. The low resolution x-ray diffraction difference map may also suggest the approximate location of the carboxyl terminus.  相似文献   

4.
5.
Binding of F-actin to spectrin-actin-depleted erythrocyte membrane inside-out vesicles was measured using [3H]F-actin. F-actin binding to vesicles at 25 degrees C was stimulated 5-10 fold by addition of spectrin dimers or tetramers to vesicles. Spectrin tetramer was twice as effective as dimer in stimulating actin binding, but neither tetramer nor dimer stimulated binding at 4 degrees C. The addition of purified erythrocyte membrane protein band 4.1 to spectrin- reconstituted vesicles doubled their actin-binding capacity. Trypsinization of unreconstituted vesicles that contain < 10% of the spectrin but nearly all of the band 4.1, relative to ghosts, decreased their F-actin-binding capacity by 70%. Whereas little or none of the residual spectrin was affected by trypsinization, band 4.1 was significantly degraded. Our results show that spectrin can anchor actin filaments to the cytoplasmic surface of erythrocyte membranes and suggest that band 4.1 may be importantly involved in the association.  相似文献   

6.
7.
The function of protein kinase C family members depends on two tightly coupled phosphorylation mechanisms: phosphorylation of the activation loop by the phosphoinositide-dependent kinase, PDK-1, followed by autophosphorylation at two positions in the COOH terminus, the turn motif, and the hydrophobic motif. Here we address the molecular mechanisms underlying the regulation of protein kinase C betaII by PDK-1. Co-immunoprecipitation studies reveal that PDK-1 associates preferentially with its substrate, unphosphorylated protein kinase C, by a direct mechanism. The exposed COOH terminus of protein kinase C provides the primary interaction site for PDK-1, with co-expression of constructs of the carboxyl terminus effectively disrupting the interaction in vivo. Disruption of this interaction promotes the autophosphorylation of protein kinase C, suggesting that the binding of PDK-1 to the carboxyl terminus protects it from autophosphorylation. Studies with constructs of the COOH terminus reveal that the intrinsic affinity of PDK-1 for phosphorylated COOH terminus is over an order of magnitude greater than that for unphosphorylated COOH terminus, contrasting with the finding that PDK-1 does not bind phosphorylated protein kinase C effectively. However, effective binding of the phosphorylated species can be induced by the activated conformation of protein kinase C. This suggests that the carboxyl terminus becomes masked following autophosphorylation, a process that can be reversed by the conformational changes accompanying activation. Our data suggest a model in which PDK-1 provides two points of regulation of protein kinase C: 1) phosphorylation of the activation loop, which is regulated by the intrinsic activity of PDK-1, and 2) phosphorylation of the carboxyl terminus, which is regulated by the release of PDK-1 to allow autophosphorylation.  相似文献   

8.
Mammalian homologues of the Drosophila polarity proteins Stardust, Discs Lost, and Crumbs have been identified as Pals1, Pals1-associated tight junction protein (PATJ), and human Crumbs homologue 1 (CRB1), respectively. We have previously demonstrated that PATJ, Pals1, and CRB1 can form a tripartite tight junction complex in epithelial cells and that PATJ recruits Pals1 to tight junctions. Here, we observed that the Pals1/PATJ interaction was not crucial for the ultimate targeting of PATJ itself to tight junctions. This prompted us to examine if any of the 10 post-synaptic density-95/Discs Large/zona occludens-1 (PDZ) domains of PATJ could bind to the carboxyl termini of known tight junction constituents. We found that the 6th and 8th PDZ domains of PATJ can interact with the carboxyl termini of zona occludens-3 (ZO-3) and claudin 1, respectively. PATJ missing the 6th PDZ domain was found to mislocalize away from cell contacts. Surprisingly, deleting the 8th PDZ domain had little effect on PATJ localization. Finally, reciprocal co-immunoprecipitation experiments revealed that full-length ZO-3 can associate with PATJ. Hence, the PATJ/ZO-3 interaction is likely important for recruiting PATJ and its associated proteins to tight junctions.  相似文献   

9.
The Hsp70 family member mortalin (mot-2/mthsp70/GRP75) binds to a carboxyl terminus region of the tumor suppressor protein p53. By in vivo co-immunoprecipitation of mot-2 with p53 and its deletion mutants, we earlier mapped the mot-2-binding site of p53 to its carboxyl terminus 312-352 amino acid residues. In the present study we attempted to disrupt mot-2-p53 interactions by overexpression of short p53 carboxyl-terminal peptides. We report that p53 carboxyl-terminal peptides (amino acid residues 312-390, 312-352, 323-390, and 323-352) localize in the cytoplasm, whereas 312-322, 337-390, 337-352, and 352-390 locate mostly in the nucleus. Most interestingly, the cytoplasmically localizing p53 peptides harboring the residues 323-337 activated the endogenous p53 function by displacing it from p53-mortalin complexes and relocating it to the nucleus. Such activation of p53 function was sufficient to cause growth arrest of human osteosarcoma and breast carcinoma cells.  相似文献   

10.
Signals that can mediate ligand-induced receptor internalization and calcium regulation are present in a 48-amino acid "calcium-internalization" domain in the C' terminus of the epidermal growth factor (EGF) receptor. The basis of calcium and internalization regulation signalled by this 48-amino acid sequence was analyzed using deletion and substitution mutant receptors. Cells expressing truncated receptors containing either the NH2- or COOH-terminal portion of the 48-residue domain displayed high affinity EGF-dependent endocytosis and receptor down-regulation. These endocytosis-competent EGF receptor mutants that lacked any autophosphorylation site were unable to increase the concentration of intracellular calcium. To investigate the role of self-phosphorylation in EGF-induced calcium mobilization, phenylalanine was substituted for the single autophosphorylated tyrosine residue in this region of an internalization-competent truncated receptor. The receptor-mediated calcium response was abolished, while ligand-dependent receptor internalization was unimpaired. These results demonstrate that EGF-dependent receptor endocytosis and calcium mobilization are separate events. Tyrosine self-phosphorylation is required for increased [Ca2+]i, while structural features distinct from autophosphorylation are required for receptor internalization.  相似文献   

11.
Two polyclonal antibodies were raised to synthetic peptides corresponding to amino acids Ser21-Tyr35 and Lys247-Phe261 of cytochrome b561. These antibodies were used to test the native orientation of the amino and carboxyl termini of this transmembrane electron transport protein. Carboxyl-terminal epitopes were lost when intact chromaffin granules were treated with Pronase. This result indicates that the carboxyl terminus is cytoplasmically exposed and confirms a theoretical prediction obtained from hydropathy plots. Epitopes that were recognized by an amino-terminal antipeptide antibody were not removed under the same conditions. This finding implied that the amino terminus was not proteolytically accessible on the exterior of the granule. The abundance of threonine and serine residues in the amino-terminal region suggested that the amino terminus could be held in the membrane by covalent fatty acylation. Treatment of purified delipidated cytochrome b561 with hydroxylamine resulted in the release of a fatty acid hydroxamate. Sulfhydryl analysis of purified cytochrome b561 showed that all 3 cysteine residues were in the free sulfhydryl form. These observations indicate that cytochrome b561 is covalently fatty acylated and that the lipid is bound through ester linkages of serine or threonine residues.  相似文献   

12.
Bax is a cytosolic protein that responds to various apoptotic signals by binding to the outer mitochondrial membrane, resulting in membrane permeabilization, release of cytochrome c, and caspase-mediated cell death. Currently discussed mechanisms of membrane perforation include formation of hetero-oligomeric complexes of Bax with other pro-apoptotic proteins such as Bak, or membrane insertion of multiple hydrophobic helices of Bax, or formation of lipidic pores physically aided by mitochondrial membrane-inserted proteins. There is compelling evidence provided by our and other groups indicating that the C-terminal “helix 9” of Bax mediates membrane binding and pore formation, yet the mechanism of pore forming capability of Bax C-terminus remains unclear. Here we show that a 20-amino acid peptide corresponding to Bax C-terminus (VTIFVAGVLTASLTIWKKMG) and two mutants where the two lysines are replaced with glutamate or leucine have potent membrane pore forming activities in zwitterionic and anionic phospholipid membranes. Analysis of the kinetics of calcein release from lipid vesicles allows determination of rate constants of pore formation, peptide–peptide affinities within the membrane, the oligomeric state of transmembrane pores, and the importance of the lysine residues. These data provide insight into the molecular details of membrane pore formation by a Bax-derived peptide and open new opportunities for design of peptide-based cytotoxic agents.  相似文献   

13.
14.
The consequences of the rapid 3-phosphorylation of inositol 1,4,5-trisphosphate (IP(3)) to produce inositol 1,3,4,5-tetrakisphosphate (IP(4)) via the action of IP(3) 3-kinases involve the control of calcium signals. Using green fluorescent protein constructs of full-length and truncated IP(3) 3-kinase isoform A expressed in HeLa cells, COS-7 cells, and primary neuronal cultures, we have defined a novel N-terminal 66-amino acid F-actin-binding region that localizes the kinase to dendritic spines. The region is necessary and sufficient for binding F-actin and consists of a proline-rich stretch followed by a predicted alpha-helix. We also localized endogenous IP(3) 3-kinase A to the dendritic spines of pyramidal neurons in primary hippocampal cultures, where it is co-localized postsynaptically with calcium/calmodulin-dependent protein kinase II. Our experiments suggest a link between inositol phosphate metabolism, calcium signaling, and the actin cytoskeleton in dendritic spines. The phosphorylation of IP(3) in dendritic spines to produce IP(4) is likely to be important for modulating the compartmentalization of calcium at synapses.  相似文献   

15.
Sucrose synthase (SUS) is a key enzyme in plant metabolism, as it serves to cleave the photosynthetic end-product sucrose into UDP-glucose and fructose. SUS is generally assumed to be a tetrameric protein, but results in the present study suggest that SUS can form dimers as well as tetramers and that sucrose may be a regulatory factor for the oligomerization status of SUS. The oligomerization of SUS may also affect the cellular localization of the protein. We show that sucrose concentration modulates the ability of SUS1 to associate with F-actin in vitro and that calcium-dependent protein kinase-mediated phosphorylation of recombinant SUS1 at the Ser15 site is a negative regulator of its association with actin. Although high sucrose concentrations and hyperphosphorylation have been shown to promote SUS association with the plasma membrane, we show that the opposite is true for the SUS-actin association. We also show that SUS1 has a unique 28 residue coiled-coil domain that does not appear to play a role in oligomerization, but may prove to be significant in the future for interactions of SUS with other proteins. Collectively, these results highlight the multifaceted nature of SUS association with cellular structures.  相似文献   

16.
Interaction with the extracellular matrix is important for the proliferation and differentiation of cells during development. A specialized extracellular matrix, basement membrane, is built around a scaffold of procollagen IV molecules. We report the sequence of a 2.5-kilobase cDNA which contains the carboxyl end of a Drosophila melanogaster procollagen IV. The amino acid sequence of the carboxyl-terminal domain, which forms an essential intermolecular linkage between procollagen IV molecules, is 59% identical in Drosophila and vertebrate procollagens IV, and an additional 17% of residues are conservatively substituted. This implies that the nature of the linkage is also conserved. We suggest that intermolecular junctions through procollagen IV carboxyl domains are fundamental elements of the molecular architecture of Metazoan basement membranes and have been conserved during evolution. The isolation and identification of this basement membrane collagen gene of Drosophila will help in deducing the function of procollagen IV in basement membranes.  相似文献   

17.
Analysis of the biological and biochemical activities of pp60recombinant-src proteins encoded by 12 carboxyl-terminal mutants showed that a wide family of alternate src carboxyl termini permit complete transforming and kinase activities. src proteins having carboxyl termini which are up to 10 amino acids longer than that of pp60c-src (17 amino acids longer than that of pp60v-src) still permit transformation. Transformation-positive mutations preserve leucine-516, a residue which is highly conserved in protein-tyrosine kinase sequences; removal causes in vivo protein instability. Successive deletion mutants show that this residue is at the boundary of a region required for kinase activity. pp60src which is truncated just outside this point still transforms cells and binds both pp50 and pp90 cellular proteins.  相似文献   

18.
Vascular endothelial growth factor receptor-2 (VEGFR-2/FLK-1) is a receptor tyrosine kinase whose activation stimulates angiogenesis. We recently generated a chimeric VEGFR-2 in which the extracellular domain of VEGFR-2 was replaced with the extracellular domain of human colony stimulating factor-1 receptor and expressed in endothelial cells. To study the contribution of the carboxyl terminus to activation of VEGFR-2, we created a panel of truncated receptors in which the carboxyl terminus of VEGFR-2 was progressively deleted. Removal of the entire carboxyl terminus eliminated activation of VEGFR-2, its ability to activate signaling proteins, and its ability to stimulate cell proliferation. The carboxyl terminus-deleted VEGFR-2 exhibited impaired ligand-dependent down-regulation and inhibited the activation of wild-type receptor in a dominant-negative fashion. Furthermore, introducing the carboxyl terminus of another receptor, i.e., VEGFR-1, restored the ligand-dependent activation of the carboxyl terminus-deleted VEGFR-2 and its ability to stimulate cell proliferation. Our findings suggest that the carboxyl terminus of VEGFR-2 plays a critical role in VEGFR-2 activation, its ability to activate signaling proteins, and its ability to induce biological responses. The presence of at least 57 amino acids at the carboxyl terminus of VEGFR-2 are required for VEGFR-2 activation. Thus, we propose that the carboxyl terminus is required for activation of VEGFR-2, and absence of the carboxyl terminus renders VEGFR-2 inactive.  相似文献   

19.
To determine why Ld antigens are expressed on the cell surface at levels three to four times lower than Dd or Kd antigens, pulse-chase experiments were used to compare their rates of biosynthesis and processing. Electrophoresis on sodium dodecyl sulfate gradient polyacrylamide gels resolved immunoprecipitates of each of these histocompatibility complex class I molecules into a slower and faster species. During the chase period, the faster migrating species appeared to be converted to the slower migrating species in a time-dependent manner. However, the conversion of Ld from the faster to the slower migrating species proceeded significantly more slowly than did the conversion of either Dd or Kd. Endoglycosidase H sensitivity and cell surface radiolabeling were used to determine the glycosylation state and cell location of each species of Ld and Dd. The results from these experiments, along with the pulse-chase studies and cytofluorometric analyses, suggest that Ld possesses a much slower rate of processing from a faster migrating, high mannose-bearing species to a slower migrating, complex oligosaccharide-bearing species found on the cell surface. Analysis of the beta 2-microglobulin (beta 2-m) association confirmed that Ld is associated with less beta 2-m than Dd. To localize the structures on class I molecules influencing their surface expression, rate of processing, and beta 2-m association, the Ddm1 molecule was analyzed. The Ddm1 molecule of the mutant B10.D2-H-2dm1 has previously been shown to be a chimeric Dd (amino-terminal)/Ld (carboxyl-terminal) polypeptide. The surface expression, processing and beta 2-m association of Ddm1 were found to be similar to Dd rather than Ld, suggesting that each of these phenomena are influenced by protein structure in the amino terminus.  相似文献   

20.
Like all members of the Na(+)/Cl(-)-dependent neurotransmitter transporter family, the rat gamma-aminobutyric acid transporter-1 (GAT1) is sorted and targeted to specialized domains of the cell surface. Here we identify two discontinuous signals in the carboxyl terminus of GAT1 that cooperate to drive surface expression. This conclusion is based on the following observations. Upon deletion of the last 37 amino acids, the resulting GAT1-Delta37 remained trapped in the endoplasmic reticulum. The presence of 10 additional residues (GAT1-Delta27) sufficed to support the interaction with the coat protein complex II component Sec24D; surface expression of GAT1-Delta27 reached 50% of the wild type level. Additional extensions up to the position -3 (GAT1-Delta3) did not further enhance surface expression. Thus the last three amino acids (AYI) comprise a second distal signal. The sequence AYI is reminiscent of a type II PDZ-binding motif; accordingly substituting Glu for Ile abrogated the effect of this motif. Neither the AYI motif nor the last 10 residues rescued the protein from intracellular retention when grafted onto GAT1-Delta37 and GAT1-Delta32; the AYI motif was dispensable for targeting of GAT1 to the growth cone of differentiating PC12 cells. We therefore conclude that the two segments act in a hierarchical manner such that the proximal motif ((569)VMI(571)) supports endoplasmic reticulum export of the protein and the distal AYI motif places GAT1 under the control of the exocyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号