首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fine structure of tuft cells in the main excretory duct of rat submandibular gland was investigated using the high pressure freezing and freeze substitution (HPF-FS) method and compared with that seen with both conventional chemical fixation (CF) method and en bloc treatment with ruthenium red. Some MEDs also were subjected to histochemistry for lectins. The apical vesicles and tubules of tuft cells observed by TEM after the HPF-FS method were different in shape from those treated by CF. With the first method, these vesicles and tubules, which may represent sections of a tubular system, appeared more slender and filled with a material of moderate density. A prominent glycocalyx covering the microvillar plasma membrane was observed in tuft cells processed both with the HPF-FS method and with ruthenium red. The surface of microvilli and the tubulo-vesicular structures of these cells exhibited the same soybean agglutinin (SBA) reactivity, suggesting a relationship between them.  相似文献   

2.
A PATTERN OF EPIDERMAL CELL MIGRATION DURING WOUND HEALING   总被引:6,自引:0,他引:6       下载免费PDF全文
Epidermal repair during wound healing is under investigation at both the light and electron microscopic levels. Suction-induced subepidermal blisters have been employed to produce two complementary model wound healing systems. These two model systems are: (a) intact subepidermal blisters, and (b) opened subepidermal blisters (the blister roof was removed immediately after induction, leaving an open wound). From these studies a pattern of movement for epidermal cells in wound healing is proposed. This pattern of movement is the same for both model systems. Epidermal cells appear to move by rolling or sliding over one another. Fine fibers oriented in the cortical cytoplasm may play an important role in the movement of these epidermal cells. Also instrumental in mediating this movement are intercellular junctions (desmosomes) and a firm attachment to a substrate through hemidesmosomes. In the intact subepidermal blisters hemidesmosomal attachment is made to a continuous and homogeneous substrate, the retained basal lamina. In the opened subepidermal blisters contact of epidermal cells is made to a discontinuous substrate composed of sporadic areas of fibrin and underlying mesenchymal cells.  相似文献   

3.
Epidermal cell migration during wound healing in Dugesia lugubris   总被引:1,自引:0,他引:1  
The epidermal cells that migrate over the surface during the wound closure stage of head regeneration in Dugesia lugubris s.l. were examined by scanning electron microscopy. The effect of cytochalasin B on epidermal cell migration was also examined. During the first few hours after decapitation epidermal cells at the edges of the wound showed significant changes of shape related to the process of migration that was accomplished approximately 10 h after wounding. Flattening of the marginal cells was associated with active epidermal spreading throughout the healing period. Suitable support for migrating cells appeared to be a rhabditic network attached to the wound tissue. Epidermal cell migration was inhibited by cytochalasin B. These results demonstrate that the basis for cell movement in planarians is similar to that of many other systems.  相似文献   

4.
G Familiari  T Renda  P Motta 《Acta anatomica》1978,100(2):193-202
Steroid-secreting cells (luteal, thecal and interstitial cells) of the mouse ovary have been studied with the ruthenium red method to stain the "cell coat". The results showed that a typical cell coat covers the entire surface of the plasma membrane except where the cells are connected by specific cell junctions. Further, particularly heavy concentration of ruthenium-red-reacting material was demonstrated in pericapillary and intercellular spaces. The differences in the thickness of the cell coat and its topographical modifications among different groups of steroidogenic cells may be related not only to intercellular adhesion and interactions but also concerned with a function of control in which the cell permeability is modified in relation with phenomena of cell recognition.  相似文献   

5.
The influence of the wound epithelium on the cellular events preceding blastema formation was examined by comparing dedifferentiation, DNA labeling indices, and mitotic indices of the distal mesodermal tissues in control regenerating newt forelimbs and in amputated forelimbs covered with a flap of full thickness skin. Three kinds of results were seen following the skin-flap graft operations. Epidermal migration across the amputation surface was completely inhibited in 22% (8) of the cases and these limbs repaired the amputation wound but did not form regeneration blastemas. In 11% (4) of the experimental limbs, essentially normal wound epithelia displaced the skin flaps and the limb stumps formed blastemas and regenerated. The majority of the skin grafts (67%) exhibited epidermal migration restricted to the free edges of the flaps. These limbs formed eccentric blastemas on the ventral side of the limb next to the dermis-free epidermis and regenerated laterally in that direction.  相似文献   

6.
Morphological changes on the ovarian surface of different mammals both before and during ovulation have been examined by scanning electron microscopy. Preovulatory follicles were blisterlike structures that protruded markedly from the ovarian surface. Basal areas of preovulatory follicles were covered with polyhedral cells containing numerous microvilli, whereas on the lateral surfaces, superficial cells were elongated and possessed few microvilli. At the apex of the follicle, cells were very flattened and possessed few microvilli, which were present only in regions of intercellular contact. In some apical areas, cells appeared to be degenerating, whereas in other regions, groups of cells had "sloughed off." In addition, a fluidlike material was observed to exude from intercellular spaces of the superficial epithelium and to cover some apical cells. By transmission electron microscopy, the same fluidlike material was observed to (1) infiltrate the connective tissue of the tunica albuginea, (2) accumulate under the basal lamina, and (3) distend intercellular spaces of the superficial epithelium. Just prior to ovulation, large, irregular areas of the apex were ruptured and the oocyte, covered with a large amount of fluid, appeared to emerge from the follicle. At ovulation, the oocyte was not completely covered with follicle cells and the zona pellucida was clearly evident. The surface of the zona was quite irregular and contained numerous infoldings, channels and crypts. Follicle cells had polyhedral or star shapes and possessed large cytoplasmic evaginations that obliquely penetrated the zona. Both the zona pellucida and corona cells were covered with a fine layer of granular material. The SEM results and parallel TEM observations suggest that a local increase of fluids (edema) may be an important factor in the final decomposition of the distended and weakened apex of the preovulatory follicle. In addition, the participation of follicle cells, smooth muscle cells and the oviduct in the escape of the oocyte from the ruptured follicle is discussed.  相似文献   

7.
The epidermal cells which migrate over the wound surface of the amputated limb of the adult newt were examined using the scanning electron microscope. Specimens were prepared routinely for scanning electron microscopy or were embedded in Epon 812 for light microscopic observations. A cuff of epidermal cells was seen at the edge of the wound, from which cells appeared to migrate over the wound surface. As early as five hours after transection of the limb, the basal layers of this cuff appeared to send out pseudopodial projections. These seemed to establish a physical contact with a fibrin-like substratum, which apparently served as a means of support for the migrating cells. Subsequently, the epidermal cells became elongate and had the appearance of streaming toward the center of the wound. Between 10 and 13 hours post-amputation, the cells in the central region of the stump were rounded up and some possessed microappendages resembling microplicae and microvilli. Throughout the entire period of wound coverage, the cells seemed to maintain contact with the fibrin network, which appeared to be the first structural element of wound architecture. As a result of these observations, the mechanism by which the epidermal cells migrate has been clarified.  相似文献   

8.
HUMAN WOUND REPAIR : I. Epidermal Regeneration   总被引:21,自引:5,他引:16       下载免费PDF全文
A series of linearly incised superficial skin wounds was made on the forearms of young adult male volunteers. Wounds were sampled at several intervals between 3 hr and 21 days after wounding, for study by light and electron microscopy. The light microscopic observations show that regeneration of epidermis in human wounds conforms chronologically to that reported for the epidermis in superficial wound repair in laboratory animals. It is further shown that "ruffling" of cell membranes characterizes the cells of the migrating epidermis in early wound healing. This study reveals that the basement lamina and hemidesmosomes are established by epidermis in contact with the fibrin net at the base of early wounds. Epidermal cells in the wound environment are shown to be phagocytic. Analysis of the submicroscopic cytology of differentiating and maturing regenerated epidermis reveals that, in the sequence of events, the formation of filaments, basal lamina, and desmosomes is followed chronologically by evolution of keratohyalin granules and, subsequently, by keratinization of the surface epidermal elements. The entire sequence of migration, differentiation, and ultimate keratinization in the superficial wounds studied requires 3–5 days for completion.  相似文献   

9.
The renal tubules were investigated with the use of ruthenium red and lanthanum nitrate to titrate the carbohydrate groups which are localized on the differentiated surface of the cell membranes and intercellular spaces. Ruthenium red visualized the surface coat which is tightly bound to the outer lamellae of the cell membrane. Lanthanum nitrate used in this investigations is a valuable marker of the intercellular spaces. The applied markers have visualized in the kidney the canals which are originated from the foldings of membranes of the tubular cells which adhere to the basal membrane. The markers used in combination with the fixative glutaraldehyde-paraformaldehyde give an electrondense envelope of the cell membrane which is more distinct as compared with specimen treated with glutaraldehyde and markers only.  相似文献   

10.
The denuded basal cell layer of the hairless mouse epidermis is described in the present scanning (SEM) and transmission electron microscopical (TEM) study. The suprabasal layers were removed mechanically after trypsinization or by extracellular calcium depletion. Trypsinization before removal of the suprabasal cells caused the basal cells to shrink. Characteristic surface plication and hemi-desmosomal attachment to the basement membrane were generally preserved. SEM revealed partly maintained intercellular bridging, whereas by TEM such contacts were absent because half desmosomes were internalized. Total calcium depletion induced more serious damage to the basal cell surface, which was smooth with apparent perforations. However, cell bridges, and occasional desmosomes were present. The cell interior demonstrated important cellular injury. If the calcium deprived explants were allowed to recover in calcium-containing medium, the cells acquired an activated "regenerative" morphology, without junctions, similar to that observed in wound healing. Epidermal non-keratinocytes were seen only after trypsinization. Control experiments revealed that they adapted poorly to organ culture conditions. By TEM, we observed several interesting aspects of the differences, between dark and clear basal keratinocytes. This was unexpected because fixation studies had shown, that with the present fixation method, typical dark and clear cells do not occur in untreated epidermis. We believe that membrane injury through mechanical stripping of partly adhering epidermal layers induced "clear cells", whereby the neighboring cells appeared darker. This provides additional evidence as to the origin of the two sub-populations, dark and clear basal cells. The clear cells may be injured cells, caused by cell damage, and not by processes of cellular differentiation. The results of the present investigation supports the view that basal keratinocytes have a polygonal shape with numerous free surface extensions and they are anchored to the basement membrane with "foot pads". Our study also shows that SEM of the epidermal basal layer might be feasible. Various artifacts, however, must be considered, depending on the denudation method used. We prefer trypsinization to calcium depletion because it is less time-consuming and results in a cell morphology which in TEM is comparable to that of basal cells in untreated whole epidermis. Extra-cellular calcium depletion, however, might be useful as a method to prepare single cell suspensions for flow cytometry. Restoration of a normal calcium concentration after stripping, provides an opportunity to mimic wound healing in situ, as an alternative t  相似文献   

11.
Oxidation of ruthenium red for use as an intercellular tracer   总被引:1,自引:0,他引:1  
Summary When ruthenium red (RR) is combined with OsO4, an electronopaque complex forms which readily binds to the cell surface coat. However, the RR-OsO4 complex is often excluded from intercellular spaces in many cell types, and thus is not dependable as a tracer of regions continuous with the extracellular space. Postfixation of erythrocytes agglutinated by the lectin helix (Helix promatia) and intact carotid artery endothelium with a freshly prepared mixture of 1% OsO4 containing 0.1% ruthenium red (RR) resulted in a dense surface deposit of these cells, but intercellular regions were penetrated to a minimal degree by the stain. When a similar mixture of RR-OsO4 was allowed to stand 3 h before use, RR is oxidized by OsO4 to yield a ruthenium compound that has a spectrophotometric absorbance maximum at 365 nm. This RR molecule has a reduced number of cationic sites due to binding with osmium dioxide OsO 2 = . Postfixation of agglutinated RBCs and carotid artery endothelium with this oxidized ruthenium-OsO4 mixture resulted in a 50–80% decrease in surface deposition but markedly enhanced penetration into intercellular regions. The enhanced penetration is attributed to decreased binding affinity of the oxidized ruthenium for anionic surface membrane components, permitting effective stain penetration into regions of cell-to-cell contact rather than extensive surface deposition. These studies indicate that the ruthenium compound formed by OsO4 oxidation of ruthenium red may be a useful tracer for ultrastructural visualization of intercellular spaces and junctions.  相似文献   

12.
The interaction of migrating newt epidermal cells with the extracellular matrix protein, fibronectin, was studied. Pieces of nitrocellulose coated with intact human plasma fibronectin or proteolytically derived fragments were implanted into wounded limbs so that the coated nitrocellulose served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Epidermal cells migrated very poorly on nitrocellulose pieces coated with (a) a 27-kD amino-terminal heparin-binding fragment, (b) a 46-kD gelatin-binding fragment, (c) a combined 33- and 66-kD carboxy-terminal heparin-binding preparation representing peptide sequences in the A and B chains, respectively, or (d) a 31-kD carboxy-terminal fragment from the A chain, containing a free sulfhydryl group. In contrast, epidermal cells readily migrated onto nitrocellulose coated with a mixture of fragments from the middle of the molecule (80-125kD) that bind neither heparin nor gelatin. Attempts to block migration on fibronectin-coated nitrocellulose using IB10, a monoclonal antibody that blocks Chinese hamster ovary cell attachment to fibronectin, were unsuccessful despite saturation of the epitope against which IB10 is directed. In contrast, a polyclonal anti-fibronectin antibody did inhibit migration. These results show that the ability of fibronectin to support newt epidermal cell migration is not shared equally by all regions of the molecule, but is restricted to a domain in the middle third. They also suggest that the site supporting migration is separate and distinct from the site mediating Chinese hamster ovary cell attachment.  相似文献   

13.
Pieces of coverslip glass, polycarbonate filters, or coverslip plastic, coated with fibrinogen or type I collagen, were implanted under one edge of a fresh skin wound on adult newt hind limbs so that the implant served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Migratory events were then analyzed by phase contrast and electron microscopy. Phase-contrast microscopy revealed two types of lamellipodia on leading edge cells: one which was attached broadly to the cell body and one attached by a long, thin stalk. Stalkless forms were by far the most common type and we believe they provide the motive force for cell movement. Stalked-forms often moved at distinct angles to the direction of sheet movement, suggesting that they may be sensory appendages. Phase photographs of the leading edge of migrating sheet 4 hours and 8 hours after implantation showed that all cells that were on the leading edge at 4 hours continued to advance for the next 4 hours, demonstrating clearly that under these circumstances the distalmost cells do not become immobile upon contact with the substrate as others have suggested. TEM revealed that migrating sheets were modified monolayers and that regardless of proximodistal location in the sheet, and even in the intact skin adjoining a wound, each epidermal cell adjacent to the substrate puts forth a lamellipodium which underlaps the cell in front. This and the behavior of sheets as they were teased or pulled from the implant suggest strongly that all basal cells contribute to movement of the sheet by interacting with the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
It has been reported that vitamin A palmitate induces the production of cilia on the epidermal cells of the regenerating axolotl limb, and the formation of crevices in the epidermal surface. The aim of the present investigation was to reexamine under well defined conditions the potential of retinoids to evoke the above described metaplastic changes. In order to achieve our purpose we administered axolotls with retinoic acid for 2, 4, 6, 8, and 10 days after limb amputation. The young regenerates were inspected by scanning electron microscopy (SEM). The data obtained showed that the external layer of the wound epithelium and of the stump epidermis as well was quite normal without any sign of cilia formation. In some cases, crevices were observed even in control animals.  相似文献   

15.
Fibronectin (FN)-like protein has been localized by immunoelectron microscopy in the extracellular matrix (ECM) of planaria Dugesia lugubris s.l. The immunolabeling was present in both intercellular spaces of epidermal cells and the basement membrane, however the amount and distribution of gold particles seemed to be substantially different. FN-like material increased markedly during the passage of migrating cells through the basement membrane from the parenchyma to the epidermis. Gold particles were often found at cell-matrix contacts. Our result suggest that FN-like molecules detected in planarian ECM may be involved not only in cell adhesion but also in promoting cell migration and in regulating the epidermal cell turnover.  相似文献   

16.
In order to elucidate the physiological function of extrahepatic bile duct cells, we isolated epithelial cells from the rat extrahepatic bile duct by digesting resected segments of the extrahepatic bile duct with 0.15% trypsin in ice-cold Ca(2+)-free Hanks' balanced salt solution supplemented with 0.25 mM EDTA overnight. As a result, the epithelial cells were collected as aggregates and attached to culture dishes coated with type I collagen. Approximately 95% of the cells cultured for 24 hrs were found to be positive for gamma-glutamyl transpeptidase and cytokeratin-19, but negative for vimentin. These characteristics were identical to the features of rat extrahepatic biliary epithelial cells in situ. Ultrastructurally, the cells were long and columnar in configuration on the 2nd day in culture, and possessed numerous microvilli at the apical surface and well-developed junctional complexes at the lateral surface. These findings also indicate that the cells maintain an epithelial nature and are morphologically polarized. When the cells were exposed to a low dose of horseradish peroxidase (HRP) on the 2nd day in culture, which was followed by fixation and treatment with 3-3'-diaminobenzidine, HRP was found preferentially in the cytoplasmic vesicles near the apical surface. HRP was then observed in the intercellular spaces; however, the electron-dense tracer, ruthenium red, did not permeate into the intercellular spaces, and HRP was found in neither cytoplasms nor intercellular spaces when the cells were incubated in HRP-containing medium at 4 degrees C for 30 min. These results suggest that the extrahepatic bile duct epithelial cells are involved in the reabsorption of bile constituents.  相似文献   

17.
Induced expression of syndecan in healing wounds   总被引:23,自引:4,他引:19       下载免费PDF全文
We have studied the expression of an integral cell surface proteoglycan, syndecan, during the healing of cutaneous wounds, using immunohistochemical and in situ hybridization methods. In normal mouse skin, both syndecan antigen and mRNA were found to be expressed exclusively by epidermal and hair follicle cells. After incision and subsequent suturing, remarkably increased amounts of syndecan on the cell surfaces of migrating and proliferating epidermal cells and on hair follicle cells adjacent to wound margins were noted. This increased syndecan expression was shown to be a consequence of greater amounts of syndecan mRNA. Induction was observed already 1 d after wounding, was most significant at the time of intense cell proliferation, and was still observable 14 d after incision. The migrating cells of the leading edge of the epithelium also showed enhanced syndecan expression, although clearly less than that seen in the proliferating epithelium. The merging epithelial cells at the site of incision showed little or no syndecan expression; increased syndecan expression, however, was detected during later epithelial stratification. When wounds were left unsutured, in situ hybridization experiments also revealed scattered syndecan-positive signals in the granulation tissue near the migrating epidermal sheet. By immunohistochemical analysis, positive staining in granulation tissue was observed around vascular endothelial cells in a subpopulation of growing capillaries. Induction of syndecan in granulation tissue both at the protein and mRNA levels was temporally and spatially highly restricted. Granulation tissue, which formed in viscose cellulose sponge cylinders placed under the skin of rats, was also found to produce 3.4 and 2.6 kb mRNA species of syndecan similar to that observed in the normal murine mammary epithelial cell line, NMuMG. These results suggest that syndecan may have a unique and important role as a cell adhesion and a growth factor-binding molecule not only during embryogenesis but also during tissue regeneration in mature tissues.  相似文献   

18.
Healing of skin wounds in the African catfish Clarias gariepinus   总被引:1,自引:0,他引:1  
The African catfish Clarias gariepinus was used as a model for wound healing and tissue regeneration in a scale-less fish. A temporal framework of histological and cell proliferation markers was established after wound induction in the dorsolateral cranial region, by removing the epidermal and dermal layers, including stratum adiposum (SA). Wound closure and epidermis formation was initiated within 3 h post-procedure (hpp) with migration and concomitant proliferation of epidermal cells from the wound borders. The wound was covered by this primary epidermal front 12 hpp and fusion of the opposing epidermal fronts occurred within 24 hpp. Attachment of the newly formed epidermal layer to the underlying dermis was observed 48 hpp concomitant with a second wave of cell proliferation at the wound edge. Normal epidermal thickness within the wound was achieved 72 hpp. Formation of a basement membrane occurred by 120 hpp with concomitant emergence of the SA from the wound borders. Wound healing in C. gariepinus skin involved closure of the wound and re-epithelization through cell migration with a single wave of early cell proliferation not documented in other species. Furthermore, covering of the wound by epithelium as well as the reappearance of the basement membrane and SA occurred sooner than in other fish species.  相似文献   

19.
Fibronectin involvement in granulation tissue and wound healing in rabbits   总被引:10,自引:0,他引:10  
This study describes the distribution of fibronectin and its association with reticulin fibers (type III collagen) and hyaluronic acid in shallow rabbit wounds. Linear incisions were made dorsally with a surgical blade. Animals were sacrificed and 1,2,3,4,5, and 8 day wounds were examined using peroxidase-antiperoxidase to localize affinity-purified antibodies to fibronectin. Tissue samples were also stained with hematoxylin and eosin in addition to silver stains for reticulin, and Alcian blue for hyaluronic acid. After wounding, the incision filled with a fibrin clot that stained positively for fibronectin. The underlying dermis and adjacent, unwounded dermis also contained fibronectin. Epidermal cells that migrate from the wound margin between the clot and the dermis were in direct association with fibronectin in these wound components. By 72 hr, epidermal continuity was reestablished. Early granulation tissue formation was apparent just below the epidermis 5 day wounds. Fibronectin was observed in the matrix surrounding individual fibroblasts and codistributed with reticulin fibers and hyaluronic acid in both 5 and 8 day wounds. Granulation tissue of 8 day wounds stained intensely for fibronectin and extended to a greater depth in the reticular dermis. Dense fibrillar networks of fibronectin and fibroblasts were aligned parallel to the epidermis, giving the granulation tissue a highly structured and organized appearance. Fibroblasts contained fibronectin and were surrounded by less fibronectin at the wound periphery than within the granulation tissue. These findings suggest that fibronectin may be important in the reconstruction of tissues during repair by functioning as an extracellular scaffold for migrating cells.  相似文献   

20.
The nature of the substrate that supports epithelial migration in vivo is of interest, particularly with respect to mechanisms of wound healing. Immunofluorescence and electron microscopy were used to search for common substrate components in prototype rabbit corneal wounds: epithelial scrape wounds, in which the corneal or conjunctival epithelium migrated over the denuded lamina densa of the corneal basement membrane (CBM), and superficial keratectomy, in which the corneal epithelium migrated over a bare stroma without CBM. The corneal epithelium moved rapidly over the CBM or stroma to cover the defect within 2-3 d, whereas the conjunctival epithelium required 1-2 wk. In all wounds, fibronectin and fibrin/fibrinogen were deposited onto the bare surface within 8 h after wounding and persisted under the migrating epithelium until migration was complete. Bullous pemphigoid antigen (BPA), a normal component of the CBM, was removed with the epithelium upon scrape wounding and reappeared in the CBM after migration was completed. In contrast, the conjunctival epithelium had a continuous subepithelial band of BPA out to the migrating tip. Laminin, also a normal component of the CBM, was not removed in the scrape wounds, indicating that the region of least resistance to shear stress was between the BPA and laminin layers. Laminin was removed by superficial keratectomy and was not detectable under the leading edge of the migrating cells. Laminin and BPA were restored in the CBM by 2-4 wk. Type IV collagen could not be detected in normal CBM, but was conspicuously present in conjunctival basement membrane and in blood vessels. Focal bands of type IV collagen did appear in the newly synthesized CBM 2-4 wk after keratectomy. These results argue that BPA, laminin, and type IV collagen are not essential for the migration of corneal epithelium during wound healing and support the hypothesis that fibronectin and fibrin/fibrinogen are the common, perhaps the essential, components of the provisional matrix that serves as a substrate until the permanent attachment components are regenerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号