首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 332 毫秒
1.
The abdominal nerve cord of Periplaneta americana was studied utilizing light and electron microscopes. In the nerve cells, delicate granules, similar to those probably responsible for cytoplasmic basophilia, are evenly distributed in "dark" cells and clumped in "light" cells. Neuroglial cells are stained metachromatically by cresyl violet. The neuroglial cells have many processes which ramify extensively and are enmeshed to form overlapping layers. These imbricated processes ensheath the nerve cells; the inner layer of the sheath penetrates into the neuron and is responsible for the appearance of the trophospongium of Holmgren. Nerve fibers are embedded within glial cells and surrounded by extensions of the plasma membrane similar to mesaxons. Depending on their size, two or several nerve fibers may share a single glial cell. Nerve fibers near their terminations on other nerve fibers contain particles and numerous, large mitochondria. The ganglion is ensheathed by a thick feltwork of connective tissue and perilemmal cells. The abdominal connective has a thinner connective tissue sheath which is without perilemmal cells. The nerve fibers and sheaths in the connective become thinner as they pass through ganglia.  相似文献   

2.
Summary The ultrastructure of the innervation of the anterior cerebral artery of the rat was studied in control animals and in animals after superior cervical ganglionectomy.Fluorescence histochemistry shows a periarterial network of intensely fluorescent fibers which are divided into two groups, adventitial and periadventitial. The fluorescence begins to decrease 26 hours after, and completely disappears about 32 hours after, ganglionectomy.Fine structural changes are first observed 18 hours after ganglionectomy, when the axoplasm of degenerating axons becomes electron dense. This density gradually increases up to about 32 hours. By 32 hours most axons with disintegrating axolemmas become inclusion bodies of the Schwann cells. At this stage, synaptic vesicles can still be distinguished as less dense areas, but the membrane structures of synaptic vesicles and mitochondria are difficult to recognize. The degenerating axons are gradually absorbed and by 38 hours dense, residual bodies are observed in the Schwann cells. Generally speaking, the degeneration occurs first in the adventitial fibers and then in the periadventitial fibers. The transient appearance of small, granular vesicles is noticed in axon terminals about 18 hours after denervation, although very few small, granular vesicles are seen in control tissue or at later stages of degeneration.  相似文献   

3.
Electron microscopy was used to study synapse development in the cardiac ganglia of human fetuses ranging from 8 to 27 weeks of ovulation time. Staining with ethanolic phosphotungstic acid was used for analysis of synaptic active zones. Specialization of interneuronal links begins with the appearance of electron dense material on plasmalemmas of nerve cells in the places of simple contacts. First synapses with single synaptic vesicles and short osmiophilic zones were found in cardiac ganglia in 8-week-old fetuses. Large granular vesicles and mitochondria vesicles are formed from cisternae of agranular endoplasmic reticulum in the preterminal parts of axons and moved by axoplasmic transport to the osmiophilic zones of future synapses. Axodendritic synapses appeared earlier in the cardiac ganglia than axosomatic ones, the latter were observed from the middle of gestation. Transient neuroglial synapse-like contacts were found in the cardiac ganglia. Staining with phosphotungstic acid made it possible to distinguish the degree of synapse maturation according to active synaptic zones. The peculiarities of synaptic development in cardiac ganglia in comparison with that in the central nervous system may be accounted for by different origins of the neural tube and of neural crest and by the level of their phylogenic development.  相似文献   

4.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Summary The area postrema of the rabbit, which was perfused with glutaraldehyde and postfixed in osmium tetroxide, was observed under the electron microscope. This area showed neuronal and neuroglial structures similar to those of ordinary cerebral tissue, except for rich blood capillaries, which were surrounded by conspicuous perivascular spaces. Parenchymal cells included a moderate number of small neurons and large numbers of specific astrocyte-like cells. The neuropil consisted of a small number of thin myelinated and many non-myelinated nerve fibers of varying calibers, axo-dendritic synapses, and neuroglial cell processes, leaving no spaces between them. The axons and synaptic terminals contained moderate amounts of granular vesicles, which were similar in size to those found in the hypothalamus and were supposed to contain catecholamine. Glycogen paticles were demonstrated mainly in the cytoplasm of the astrocyte-like cells.  相似文献   

6.
The abdominal nerve cord of Periplaneta americana was studied utilizing light and electron microscopes. In the nerve cells, delicate granules, similar to those probably responsible for cytoplasmic basophilia, are evenly distributed in "dark" cells and clumped in "light" cells. Neuroglial cells are stained metachromatically by cresyl violet. The neuroglial cells have many processes which ramify extensively and are enmeshed to form overlapping layers. These imbricated processes ensheath the nerve cells; the inner layer of the sheath penetrates into the neuron and is responsible for the appearance of the trophospongium of Holmgren. Nerve fibers are embedded within glial cells and surrounded by extensions of the plasma membrane similar to mesaxons. Depending on their size, two or several nerve fibers may share a single glial cell. Nerve fibers near their terminations on other nerve fibers contain particles and numerous, large mitochondria. The ganglion is ensheathed by a thick feltwork of connective tissue and perilemmal cells. The abdominal connective has a thinner connective tissue sheath which is without perilemmal cells. The nerve fibers and sheaths in the connective become thinner as they pass through ganglia.  相似文献   

7.
We describe the application of three-dimensional collagen matrices to the study of nerve cord repair in the leech. Our experiments show that ganglia and connectives of the leech ventral nerve cord can be maintained for up to four weeks embedded in 3D gels constructed from mammalian type I collagen. Severed nerve cords embedded in the collagen gel reliably repaired within a few days of culture. The gel was penetrable by cells emigrating from the cut ends of nerves and connectives, and we consistently saw regenerative outgrowth of severed peripheral and central axons into the gel matrix. Thus, 3D gels provide an in vitro system in which we can reliably obtain repair of severed nerve cords in the dish, and visualize cell behaviour underlying regenerative growth at the damage site: and which offers the possibility of manipulating the regenerating cells and their extracellular environment in various ways at stages during repair. Using this system it should be possible to test the effect on the repair process of altering expression of selected genes in identified nerve cells.  相似文献   

8.
Summary Apart from cholinergic nerve fibers, which make up the main part of efferent fibers to the avian adrenal gland (Unsicker, 1973b), adrenergic, purinergic and afferent nerve fibers occur. Adrenergic nerve fibers are much more rare than cholinergic fibers. With the Falck-Hillarp fluorescence method they can be demonstrated in the capsule of the gland, in the pericapsular tissue and near blood vessels. By their green fluorescent varicosities they may be distinguished characteristically from undulating yellow fluorescent ramifications of small nerve cells which are found in the ganglia of the adrenal gland and below the capsule. The varicosities of adrenergic axons exhibit small (450 to 700 Å in diameter) and large (900 to 1300 Å in diameter) granular vesicles with a dense core which is usually situated excentrically. After the application of 6-hydroxydopamine degenerative changes appear in the varicosities. Adrenergic axons are not confined to blood vessels but can be found as well in close proximity of chromaffin cells. Probably adrenergic fibers are the axons of large ganglion cells which are situated mainly within the ganglia of the adrenal gland and in the periphery of the organ and whose dendritic endings show small granular vesicles after treatment with 6-OHDA.A third type of nerve fiber is characterized by varicosities containing dense-cored vesicles with a thin light halo, the mean diameter (1250 Å) of which exceeds that of the morphologically similar granular vesicles in cholinergic synapses. Those fibers resemble neurosecretory and purinergic axons and are therefore called p-type fibers. They cannot be stained with chromalum-hematoxyline-phloxine. Axon dilations showing aggregates of mitochondria, myelin bodies and dense-cored vesicles of different shape and diameter are considered to be afferent nerve endings. Blood vessels in the capsule of the gland are innervated by both cholinergic and adrenergic fibers.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).  相似文献   

9.
The present study describes the structural changes in the gracile nucleus of the spontaneously diabetic BB rat. At 3-7 days post-diabetes, axons, axon terminals and dendrites showed electron-dense degeneration. Degenerating axons were characterized by swollen mitochondria, vacuolation, accumulation of glycogen granules, tubulovesicular elements, neurofilaments and dense lamellar bodies. Degenerating axon terminals consisted of an electron-dense cytoplasm containing swollen mitochondria, vacuoles and clustering of synaptic vesicles. These axon terminals made synaptic contacts with cell somata, dendrites and other axon terminals. Degenerating dendrites were postsynaptic to normal as well as degenerating axon terminals. At 1-3 months post-diabetes, degenerating electron-dense axons, axon terminals and dendrites were widely scattered in the neuropil. Macrophages containing degenerating electron-dense debris were also present. At 6 months post-diabetes, the freshly degenerating neuronal elements encountered were similar to those observed at 3-7 days. However, there were more degenerating profiles at 6 months post-diabetes compared to the earlier time intervals. Terminally degenerating axons were vacuolated and their axoplasm appeared amorphous. It is concluded that degenerative changes occur in the gracile nucleus of the spontaneously diabetic BB rat.  相似文献   

10.
The fine structure of muscle fibers connecting the two arms of the spermatheca and their innervating axons was studied with the electron microscope. The muscle fibers appear to be a sub-set of skeletal and not visceral muscles. Neurosecretory axons with electron dense granules are adjacent to the muscle fibers in young females O-day post-eclosion but not in the ovipositing adult. The typical nerves form synaptic junctions with muscle fibers at all ages but the nerves are divided into two types based on the morphology of the synaptic vesicles they contain, either spherical or flattened.  相似文献   

11.
神经退变和再生的构筑变化   总被引:4,自引:0,他引:4  
将夹伤的大鼠坐骨神经分离成单根纤维,观察98d内轴突和许旺细胞的构筑变化过程发现,损伤既使轴浆转运阻断、积累的细胞器退变,也使髓鞘板层,特别是斯兰氏切迹撕裂、变形或侵入轴突。轴突或髓鞘虽可各呈单一的退变,但以两者并存多见。伤后1d即出现富含微管的再生芽,它被增殖的许旺细胞突起及其基底膜包绕,并逐步发育成熟。根据再生的特征性构筑变化,提出了再生芽、无髓和有髓纤维、斯兰氏切迹、朗氏结与神经小束的初见、发育和成熟高峰期的时间顺序。无髓纤维的发育成熟早于有髓纤维。  相似文献   

12.
Axonal tracing and immunocytochemical techniques were used to study the innervation of the head retractor muscle (HRM) in the pond snail Lymnaea stagnalis L. Fibers of both the superior and inferior cervical nerves which innervate the HRM form endings that comply with the structure of chemical synapses. The somata of neurons with axons in these nerves are located in all except the buccal ganglia of the central nervous system, and this seems to be a special feature of the HRM motor system. By staining the filamentous actin with Oregon-green conjugated phalloidin, we demonstrated that the HRM has a multiterminal innervation and one muscle fiber can contain several synaptic endings which appear to be both morphologically and physiologically different. The morphological diversity of synaptic vesicles suggests a multiplicity of neurotransmitters acting on these nerve-muscle junctions. Immunocytochemical evidence was found for a strong serotonergic and FMRFamidergic innervation of muscle fibers through axons of the inferior cervical nerve. The thin fibers of the inferior cervical nerve possess immunoreactivity to glutamate, gamma-aminobutyric acid (GABA) and choline-acetyltransferase, and form sparser innervation patterns in the muscle. Our results indicate that several neurotransmitters are present in the nerves innervating the Lymnaea HRM and may therefore participate in the control of this muscle. The possible behavioral significance of such different neurotransmitter sets involved in the regulation of contractions is discussed.  相似文献   

13.
This study describes the nature and time-course of a swelling phase during the degeneration of unmyelinated nerve fibers, as observed in highly organized cultures of rodent sensory ganglia. Observations were made on nerve fascicles after they were cut and during nutritional deprivation. About 12 hr after nerve transection, large, clear vacuoles appear throughout fascicles distal to the cut. These vacuoles are most numerous at 24 hr and then gradually subside; after 48 hr, only small granules mark the severed fascicles. Electron microscopy shows that the vacuoles are, in fact, massive focal dilations of unmyelinated axons. Similar focal dilations in unmyelinated axons are observed if cultures are not refed for 5–7 days; under these conditions glucose concentrations fall below 20 mg/100 ml and degenerative changes begin to appear in neuronal somas. If the gas-tight assembly is opened and the culture refed, there is rapid disappearance of axonal dilations (usually within 1 hr) and recovery of many of the damaged neurons. Cooling (4°C) prevents this reversal, suggesting that an active process is involved. It is postulated that the swellings result from the failure of active axolemmal ion-pumping mechanisms prior to loss of selective permeability in the axon membrane. The reasons for the focal nature of the swellings is unknown. A literature review indicates that a phase of focal swelling has frequently been observed during the degeneration of unmyelinated nerve fibers in vivo.  相似文献   

14.
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP–/–Vim–/– mice. After sciatic nerve crush in GFAP–/–Vim–/– mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.  相似文献   

15.
Summary The ultrastructural effects of vinblastine on the arcuate neurons and median eminence were studied in the rat. The animals were stereotaxically injected with solutions of 1 mM and 5 mM vinblastine into the median eminence and killed 3, 8 and 21 days after injection. Eight days after injection of 1 mM vinblastine the neurons of the arcuate nucleus showed marked changes. The Golgi complex was more distinct and considerable increases in the populations of dense bodies, granulated vesicles and coated vesicles were observed. Changes in the axo-somatic synapses and degenerating fibers in the surrounding neuropil were also characteristic of the experimental animals. The outer zone of the median eminence showed numerous degenerated nerve fibers and fibers engulfed by glial cell processes. Eight days after injection of 5 mM vinblastine arcuate neurons and median eminence showed similar changes, but quantitative differences were noted. A striking ultrastructural recovery of the arcuate neurons and axons in the outer zone of the median eminence was observed 21 days after injection of either 1 mM or 5 mM vinblastine. The results are discussed in relation to axoplasmic transport and axonal degeneration.Supported by CONICET and National University of Cuyo, Argentina.Members of the Scientific Research Career of the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina.  相似文献   

16.
Morphology of the ventral nerve cord of the hawkmoth, Manduca sexta (Lepidoptera : Sphingidae), changes at the larval-pupal transition as several separate larval ganglia fuse to form single ganglia characteristic of the adult. We examined in detail the time course of ganglionic fusion. Changes in the relative positions of the ganglia were studied by staining the tissue with methylene or toluidine blue. Alterations in the positions and structure of individual neurons were studied by filling neurons with a cobalt-lysine complex. The first gross morphological change, anterior movement of the first abdominal ganglion, is visible within the first 24 hr after pupal ecdysis. Adult ventral nerve cord morphology is recognizable 6 days later, approximately 12 days before the adult will emerge. The sequence in which the individual ganglia fuse is invariant. During ganglionic fusion, the neuronal cell bodies and associated neuropil move out of their former ganglionic sheath and through the sheath covering the connectives. Axons between the fusing ganglia form loops in the shortening connectives. The presence of looping axons is a morphological feature that identifies the boundaries between ganglia during intermediate stages of fusion. Some individual adult neurons also show looped axons at the boundaries of fused ganglia. These axonal loops may be a valuable morphological marker by which neurons can be characterized as conserved neurons.  相似文献   

17.
The distribution of esterase activity in the last abdominal ganglion, the connectives and the cereal nerves of the cockroach Periplaneta americana has been investigated cytochemically. Activity of an unspecific eserine-insensitive esterase (or esterases) has been found in glial elements in these regions of the nerve cord. In addition, sites of cholinesterase (eserine-sensitive) activity have been found in association with (a) the glial sheaths of the axons in the cereal nerves and connectives, (b) the glial folds encapsulating the neuron perikarya in the ganglion, and (c) in localized areas along the membranes of axon branches within the neuropile, often flanked by focal clusters of synaptic vesicles. These results are discussed with particular reference to the previously reported insensitivity of the insect nerve cord to applied acetylcholine, and to the probable existence of a cholinergic synaptic mechanism in the central nervous system of this insect.  相似文献   

18.
Structural plasticity at crustacean neuromuscular synapses   总被引:1,自引:0,他引:1  
Crustacean motor axons innervate muscle fibers via a multiplicity of synaptic terminals which release small but variable amounts of transmitter. Differences in release performance appear to be correlated with the size of synaptic contacts and presynaptic dense bars (active zones). These structural parameters proliferate via sprouting from existing synaptic terminals and relocate to ever more distal sites during development and growth of an identified axon. Moreover, alterations in number of synaptic contacts and active zones occur in adults following stimulation or decentralization, demonstrating structural plasticity of crustacean neuromuscular synapses.  相似文献   

19.
Summary Fibres growing from neurons of explanted dorsal root ganglia from 10 day chick embryos were transected and subsequently observed by light and electron microscopy after periods of a few to fifty minutes. Changes immediately proximal and distal to the cut together with alterations further away from the site of injury on both sides of the cut were recorded. Observations were also made on the growth cones of damaged axons and on changes in associated glial cells.Reactive and degenerative changes including the rotation, retraction and swelling of cut axons occurred rapidly. Electron microscopy revealed tracts of filamentous material close to the sealed-off ends of axons, swollen organelles such as mitochondria, and lamellar bodies of varying dimensions.Proximal to the injury and closer to the expiant, damaged and degenerating axons mingled with normal processes. Many contained only a fine granular material, others clumps of organelles, particularly mitochondria.Distal to the cut, microspikes were lost from some growth cones. The dense granular material filling microspikes and growth cones remained unchanged. Clumps of large clear vesicles, lamellar bodies and swollen degenerating mitochondria were present, not only within growth cones, but also in all parts of the axon distal to the cut.Glial cells associated with transected axons soon developed an electron dense cytoplasm containing swollen organelles. Large numbers of vesicles filled with a particulate substance were also found.The possible significance of the changes observed after transection are considered and discussed.The author wishes to thank Prof. D.W. James in whose laboratory at University College London these studies were initiated, Dr. A.R. Lieberman for his expert help and advice and the University of London Central Research Fund and Wellcome Trust for financial assistance  相似文献   

20.
Synaptic differentiation among crustacean phasic motoneurons was investigated by characterizing the synaptic output and nerve terminal morphology of the two axons to the adductor exopodite muscle in the crayfish uropod. The muscle is of the fast type with short sarcomeres (2–3 μm) and a low thin to thick filament number (6:1). On single muscle fibers, excitatory postsynaptic potentials generated by the large-diameter axon are significantly larger than those by the small-diameter axon suggesting a presynaptic origin for these differences. Nerve terminals arising from these two axons have typical phasic features, filiform shape and a low (6–8%) mitochondrial density. Synaptic contacts are similar in size between the two axons as is the length and number of active zone dense bars at these synapses. The large-diameter axon, however, exhibits a twofold larger area of nerve terminal than the small-diameter axon resulting in a higher density of synapses per muscle fiber. Hence, differences in synaptic density may in part account for differences in synaptic output between these paired phasic axons. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号